DIVA: Data Intensive Visual Analytics - Provenance and Uncertainty in Human Terrain Analysis
DIVA:数据密集型可视化分析 - 人类地形分析中的起源和不确定性
基本信息
- 批准号:EP/J020443/1
- 负责人:
- 金额:$ 21.96万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2012
- 资助国家:英国
- 起止时间:2012 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Data Intensive Visual Analytics can help address the data deluge by helping decision makers to rapidly reach informed and effective decisions in a range of situations.This exploratory project will apply DIVA to defence and security applications in close collaboration with DSTL. It will investigate visual methods for effectively utilising the kinds of dynamic and uncertain data that are emerging from multiple and frequently conflicting sources. Methods will be developed to store, communicate and use metadata about (potentially conflicting, uncertain and messy) data origins, quality and analytical process. They will be transferable and apply at operational and strategic levels.We draw together a team of UK academics with complimentary expertise. Contributors from Middlesex University and City University London have growing international reputations for developing innovative and applied visual analytics solutions and the theoretical work that supports this activity. Contributors from Loughborough University offer experience of information management and analysis in real time, harsh environments and the military context. The team will work closely to establish and evaluate the potential for DIVA in the area of Human Terrain Analysis.The programme of work is designed to ensure close engagement between academics and DSTL colleagues. Short bursts of concerted activity focusing around a series of participatory design workshops will result in rapid development and evaluation. These intense periods of coordinated co-located activity will stimulate subsequent reflection and respond to feedback involving DSTL in an iterative process. A continuous bridging presence over a 12 month elapsed period (one researcher working at two sites) will support and consolidate this work. These efforts will address critical research issues faced by the emerging academic VA community: * How can we best support analysts with information about data uncertainty and provenance? These factors underlie analytic approaches in data intensive systems yet many issues remain unresolved. * How can we capture, annotate and explain the analytic process? Doing so will enable us to reproduce the analytic process and support communication and collaborative analysis. * How do VA approaches apply in critical applications areas? Close collaboration with DSTL will ensure that academic developments are grounded in and informed by an applications domain that is vital to national security.The planned activity will produce schemas, methods and prototypes that address these questions, support analytical work and demonstrate DIVA potential in the military context.The results are likely to have application impact across MOD and in wider disciplines to which VA is being increasingly applied, including significant data intensive areas in science, industry and government. Findings will be communicated widely through national and international academic conferences, social media, press releases and at DSTL networking events. Software and functionality developed will be made available through a Creative Commons licence. Along with the knowledge derived through the planned research, this will be used by the UK Visual Analytics Community.The project offers significant value, using existing skills, equipment and technology, and has low start-up costs. No recruitment is necessary with all participants employed in dynamic and successful research groups at the three participating institutions: City University London (lead), Middlesex University and Loughborough University. The programme of activity involves 24 months of research time over 12 months elapsed time and fits in well with the schedules and workloads of world class researchers operating in the international arena. All are committed to the work plan, which will contribute to institutional objectives in all cases and is supported by the US National Visual Analytics Centre.
数据密集型可视化分析可以帮助决策者在各种情况下快速做出明智且有效的决策,从而帮助解决数据泛滥的问题。这个探索性项目将与 DSTL 密切合作,将 DIVA 应用到国防和安全应用程序中。它将研究有效利用从多个且经常冲突的来源中出现的动态和不确定数据的可视化方法。将开发方法来存储、交流和使用有关(潜在冲突、不确定和混乱)数据来源、质量和分析过程的元数据。它们可以在运营和战略层面上进行转移和应用。我们汇集了一支由具有互补专业知识的英国学者组成的团队。来自密德萨斯大学和伦敦城市大学的贡献者在开发创新和应用视觉分析解决方案以及支持这项活动的理论工作方面享有越来越高的国际声誉。拉夫堡大学的贡献者提供了实时、恶劣环境和军事背景下的信息管理和分析经验。该团队将密切合作,确定和评估 DIVA 在人类地形分析领域的潜力。该工作计划旨在确保学者和 DSTL 同事之间的密切接触。围绕一系列参与式设计研讨会的短期协调活动将导致快速开发和评估。这些协调一致的活动的紧张时期将激发后续反思并对涉及 DSTL 的迭代过程中的反馈做出响应。 12 个月内的持续桥接存在(一名研究人员在两个地点工作)将支持和巩固这项工作。这些努力将解决新兴学术 VA 社区面临的关键研究问题: * 我们如何才能最好地为分析师提供有关数据不确定性和来源的信息?这些因素是数据密集型系统中分析方法的基础,但许多问题仍未解决。 * 我们如何捕捉、注释和解释分析过程? 这样做将使我们能够重现分析过程并支持沟通和协作分析。 * VA 方法如何应用于关键应用领域?与 DSTL 的密切合作将确保学术发展扎根于对国家安全至关重要的应用领域并为其提供信息。计划的活动将产生解决这些问题的模式、方法和原型,支持分析工作并展示 DIVA 在军事中的潜力结果可能会对 MOD 以及 VA 越来越多地应用的更广泛学科产生应用影响,包括科学、工业和政府中的重要数据密集型领域。研究结果将通过国内和国际学术会议、社交媒体、新闻稿和 DSTL 网络活动广泛传播。开发的软件和功能将通过知识共享许可证提供。连同通过计划研究获得的知识,英国视觉分析社区将使用这些知识。该项目利用现有技能、设备和技术提供了巨大的价值,并且启动成本较低。伦敦城市大学(牵头)、米德尔塞克斯大学和拉夫堡大学这三个参与机构的所有参与者都受雇于充满活力且成功的研究小组,因此无需招募任何参与者。该活动计划涉及 12 个月的 24 个月的研究时间,非常适合在国际舞台上工作的世界级研究人员的日程安排和工作量。所有人都致力于工作计划,这将有助于在所有情况下实现机构目标,并得到美国国家视觉分析中心的支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joseph Wood其他文献
Transforming digital virtual goods into meaningful possessions
将数字虚拟商品转变为有意义的财产
- DOI:
10.4324/9780203114834-11 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
J. Denegri;R. Watkins;Joseph Wood - 通讯作者:
Joseph Wood
Kawasaki disease in a US army soldier highlights surveillance
一名美军士兵的川崎病凸显了监视
- DOI:
10.1111/j.1365-4632.2004.02572.x - 发表时间:
2006 - 期刊:
- 影响因子:3.6
- 作者:
C. Chang;Joseph Wood;W. Strickling;D. Walsh - 通讯作者:
D. Walsh
AllTheDocks road safety dataset: A cyclist's perspective and experience
AllTheDocks 道路安全数据集:骑自行车者的观点和经验
- DOI:
10.48550/arxiv.2404.10528 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Chia;Ruikang Zhong;Jennifer Ding;Joseph Wood;Stephen Bee;Mona Jaber - 通讯作者:
Mona Jaber
Trehalose limits BSA aggregation in spray-dried formulations at high temperatures: implications in preparing polymer implants for long-term protein delivery.
海藻糖在高温下限制喷雾干燥制剂中 BSA 的聚集:对制备用于长期蛋白质输送的聚合物植入物的影响。
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
K. Rajagopal;Joseph Wood;B. Tran;T. Patapoff;T. Nivaggioli - 通讯作者:
T. Nivaggioli
Joseph Wood的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joseph Wood', 18)}}的其他基金
Catalytic Microwave Process for Upgrading of Pyrolysis Liquids from Ubiquitous Plastic Wastes
催化微波工艺对无处不在的塑料废物中的热解液进行升级
- 批准号:
EP/Y001168/1 - 财政年份:2024
- 资助金额:
$ 21.96万 - 项目类别:
Research Grant
Thermally Responsive Supports for Enhanced Efficiency in PET Depolymerisation
热响应支撑可提高 PET 解聚效率
- 批准号:
EP/Y003667/1 - 财政年份:2024
- 资助金额:
$ 21.96万 - 项目类别:
Research Grant
A Scalable Process for the Chemical Recycling of PET using Ionic Organocatalysts
使用离子有机催化剂化学回收 PET 的可扩展工艺
- 批准号:
EP/V012797/1 - 财政年份:2022
- 资助金额:
$ 21.96万 - 项目类别:
Research Grant
Novel Membrane Catalytic Reactor for Waste Polylactic Acid Recycling and Valorisation
用于废聚乳酸回收和增值的新型膜催化反应器
- 批准号:
EP/P016405/1 - 财政年份:2017
- 资助金额:
$ 21.96万 - 项目类别:
Research Grant
Towards Realisation of Untapped Oil Resources via Enhanced THAI-CAPRI Process Using Novel Catalysts
通过使用新型催化剂的增强型 THAI-CAPRI 工艺实现未开发石油资源
- 批准号:
EP/J008303/1 - 财政年份:2012
- 资助金额:
$ 21.96万 - 项目类别:
Research Grant
The development of structure in coarse-grained river bed sediments: the key to predicting sediment flux
粗粒河床沉积物的结构发育:预测泥沙通量的关键
- 批准号:
NE/H021973/1 - 财政年份:2011
- 资助金额:
$ 21.96万 - 项目类别:
Research Grant
Understanding Bio-induced Selectivity in Nanoparticle Catalyst Manufacture
了解纳米颗粒催化剂制造中的生物诱导选择性
- 批准号:
EP/I007806/1 - 财政年份:2010
- 资助金额:
$ 21.96万 - 项目类别:
Research Grant
IN-SITU CATALYTIC UPGRADING OF HEAVY CRUDE AND BITUMEN: OPTIMISATION OF NOVEL CAPRI REACTOR
重质原油和沥青的原位催化升级:新型卡普里反应器的优化
- 批准号:
EP/E057977/1 - 财政年份:2007
- 资助金额:
$ 21.96万 - 项目类别:
Research Grant
Heterogeneous Catalysis in Supercritical Fluids: The Enhancement of Catalytic Stability to Coking
超临界流体中的多相催化:焦化催化稳定性的增强
- 批准号:
EP/D503892/1 - 财政年份:2006
- 资助金额:
$ 21.96万 - 项目类别:
Research Grant
相似国自然基金
岩石非线性粘弹本构关系研究及基于密集地震台阵数据的应用
- 批准号:42374146
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
密集时序影像数据支持下的海岸带湿地遥感识别方法研究
- 批准号:42301413
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
密集数据驱动的路面性能推演模型研究
- 批准号:52372305
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
密集型追踪成对数据分析模型的建构及其在心理学研究中的应用
- 批准号:32300938
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于动静态分析的数据密集型分布式系统权限缺陷检测方法研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CC* Networking Infrastructure: Enhancing network connectivity for data-intensive, multi-institution collaborative science
CC* 网络基础设施:增强数据密集型、多机构协作科学的网络连接
- 批准号:
2346718 - 财政年份:2024
- 资助金额:
$ 21.96万 - 项目类别:
Standard Grant
DynaSun - Dynamics Of The Solar Corona In The Era Of Data Intensive Observations
DynaSun - 数据密集观测时代的日冕动力学
- 批准号:
EP/Y037464/1 - 财政年份:2024
- 资助金额:
$ 21.96万 - 项目类别:
Research Grant
XTRIPODS: Algorithms and Machine Learning in Data Intensive Models
XTRIPODS:数据密集型模型中的算法和机器学习
- 批准号:
2342527 - 财政年份:2024
- 资助金额:
$ 21.96万 - 项目类别:
Standard Grant
CDS&E: Multiscale Data Intensive Simulation and Modeling of Microemulsion Boiling: A New Paradigm for Boiling Enhancement
CDS
- 批准号:
2347627 - 财政年份:2024
- 资助金额:
$ 21.96万 - 项目类别:
Standard Grant
REU Site: Computational and Data Intensive Astrophysics at the University of Florida
REU 网站:佛罗里达大学的计算和数据密集型天体物理学
- 批准号:
2348547 - 财政年份:2024
- 资助金额:
$ 21.96万 - 项目类别:
Standard Grant