Dynamical-nonequilibrium simulations: an emerging approach to study time-dependent structural changes in proteins
动态非平衡模拟:研究蛋白质随时间变化的结构变化的新兴方法
基本信息
- 批准号:BB/X009831/1
- 负责人:
- 金额:$ 47.02万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Proteins are neither static nor work in isolation in physiological conditions. In fact, it is the opposite; proteins are continuously moving and switching between different conformations. Moreover, changes in the environment can shift the balance between their multitude of conformations. For example, changes in pH and the binding of ions or small molecules to a protein can promote specific structural changes and ultimately determine the protein's macroscopic behaviour. This ability to respond to external changes by fluctuating between conformations is a fascinating feature and is crucial for protein's function and regulation. A detailed description of a protein's conformational rearrangements is essential to understand its working mechanism and function. Even though it is possible to experimentally determine the positions of the atoms in a protein (e.g. using cryogenic electron microscopy or X-ray crystallography), in some cases, the effects of making changes to the protein (e.g. mutations or the binding of ligands and ions) are not obvious. An alternative to experimental approaches is the application of computer simulations. I have been at the forefront of developing and employing computational methods to map structural changes in proteins. For this project, in particular, the approach of combining computer simulations in different conditions (e.g. in the presence and absence of a ligand) is the keystone. This approach permits for a detailed mapping of the time evolution of the structural changes in a protein in response to an external perturbation (e.g. ligand unbinding). The proposed research, undertaken at the University of Bristol, will develop and apply new computational approaches to transform the study of conformational changes in proteins. Three fundamentally different biomolecular systems will be studied during the timeframe of this Fellowship, ranging from soluble enzymes (beta-lactamases) to membrane channels (cystic fibrosis transmembrane conductance regulator (CFTR) channel) and receptors (nicotinic acetylcholine receptors). The diversity of the systems under investigation perfectly highlights the flexibility and general applicability of the computational approaches to be used. Beta-lactamases are bacterial enzymes capable of hydrolysing antibiotics (e.g. penicillin) and are an important cause of resistance to these drugs. The CFTR channel, which sits on the surface of cells, transports chloride and bicarbonate, and its malfunction causes cystic fibrosis. Nicotinic acetylcholine receptors are ion channels widely distributed in the nervous system and are associated with many diseases and conditions, including nicotine and alcohol addiction. In this work, I will map the communication networks connecting functionally important regions within each protein and understand how small molecules and mutations impact those networks. My computational findings will unlock a diversity of interactions that will be explored experimentally by my collaborators, namely Profs Spencer (University of Bristol), Sheppard (University of Bristol), Bermudez (Oxford Brookes University), Sine (Mayo Clinic) and Gallagher (University of Bristol). Their experimental results will feed into my computational models, helping to refine and enhance them. This is a highly collaborative, multidisciplinary project that combines computational (in partnership with Oracle) and experimental expertise, which provides a unique opportunity to expand fundamental knowledge of all three systems' working mechanisms. In the longer term, this knowledge will foretell the properties of newly emerged beta-lactamases mutants, which cause antimicrobial resistance, and inform the design of new therapeutics (e.g. drugs to treat cystic fibrosis, non-opioid drugs for chronic pain, anti-addiction agents and beta-lactamases inhibitors to fight antibiotic resistance).
蛋白质在生理条件下既不是静态的也不是孤立工作的。事实上,情况恰恰相反;蛋白质在不同构象之间不断移动和转换。此外,环境的变化可以改变它们多种构象之间的平衡。例如,pH 值的变化以及离子或小分子与蛋白质的结合可以促进特定的结构变化,并最终决定蛋白质的宏观行为。这种通过构象波动来响应外部变化的能力是一个令人着迷的特征,对于蛋白质的功能和调节至关重要。蛋白质构象重排的详细描述对于理解其工作机制和功能至关重要。尽管可以通过实验确定蛋白质中原子的位置(例如使用低温电子显微镜或 X 射线晶体学),但在某些情况下,对蛋白质进行改变(例如突变或配体结合和离子)不明显。实验方法的替代方法是应用计算机模拟。我一直处于开发和利用计算方法来绘制蛋白质结构变化的前沿。对于这个项目,特别是在不同条件下(例如存在和不存在配体的情况下)结合计算机模拟的方法是关键。这种方法可以详细绘制蛋白质响应外部扰动(例如配体解结合)而发生的结构变化的时间演变。布里斯托大学进行的拟议研究将开发和应用新的计算方法来改变蛋白质构象变化的研究。该奖学金期间将研究三种根本不同的生物分子系统,从可溶性酶(β-内酰胺酶)到膜通道(囊性纤维化跨膜电导调节器(CFTR)通道)和受体(烟碱乙酰胆碱受体)。所研究系统的多样性完美地凸显了所使用的计算方法的灵活性和普遍适用性。 β-内酰胺酶是能够水解抗生素(例如青霉素)的细菌酶,是对这些药物产生耐药性的重要原因。 CFTR 通道位于细胞表面,负责运输氯化物和碳酸氢盐,其功能障碍会导致囊性纤维化。烟碱乙酰胆碱受体是广泛分布在神经系统中的离子通道,与许多疾病和病症相关,包括尼古丁和酒精成瘾。在这项工作中,我将绘制连接每个蛋白质内功能重要区域的通信网络,并了解小分子和突变如何影响这些网络。我的计算结果将解锁多种相互作用,这些相互作用将由我的合作者进行实验探索,这些合作者包括 Spencer 教授(布里斯托尔大学)、Sheppard(布里斯托大学)、Bermudez(牛津布鲁克斯大学)、Sine(梅奥诊所)和 Gallagher(大学)布里斯托尔)。他们的实验结果将输入到我的计算模型中,帮助完善和增强它们。这是一个高度协作的多学科项目,结合了计算(与 Oracle 合作)和实验专业知识,为扩展所有三个系统工作机制的基础知识提供了独特的机会。从长远来看,这些知识将预示新出现的β-内酰胺酶突变体的特性,这些突变体会导致抗菌素耐药性,并为新疗法的设计提供信息(例如治疗囊性纤维化的药物、治疗慢性疼痛的非阿片类药物、抗成瘾药物)。剂和β-内酰胺酶抑制剂来对抗抗生素耐药性)。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Decrypting Allostery in Membrane-Bound K-Ras4B Using Complementary In Silico Approaches Based on Unbiased Molecular Dynamics Simulations
使用基于无偏分子动力学模拟的互补计算机方法解密膜结合 K-Ras4B 中的变构
- DOI:http://dx.10.1021/jacs.3c11396
- 发表时间:2023
- 期刊:
- 影响因子:15
- 作者:Castelli M
- 通讯作者:Castelli M
Human cellular model systems of ß-thalassemia enable in-depth analysis of disease phenotype.
α-地中海贫血的人类细胞模型系统能够深入分析疾病表型。
- DOI:http://dx.10.1038/s41467-023-41961-9
- 发表时间:2023
- 期刊:
- 影响因子:16.6
- 作者:Daniels DE
- 通讯作者:Daniels DE
Dynamical Nonequilibrium Molecular Dynamics Simulations Identify Allosteric Sites and Positions Associated with Drug Resistance in the SARS-CoV-2 Main Protease
动态非平衡分子动力学模拟识别 SARS-CoV-2 主要蛋白酶中与耐药性相关的变构位点和位置
- DOI:http://dx.10.1021/jacsau.3c00185
- 发表时间:2023
- 期刊:
- 影响因子:8
- 作者:Chan H
- 通讯作者:Chan H
Fluctuation Relations to Calculate Protein Redox Potentials from Molecular Dynamics Simulations
通过分子动力学模拟计算蛋白质氧化还原电位的涨落关系
- DOI:http://dx.10.1021/acs.jctc.3c00785
- 发表时间:2023
- 期刊:
- 影响因子:5.5
- 作者:Oliveira A
- 通讯作者:Oliveira A
The chloroplast protein HCF164 is predicted to be associated with Coffea SH9 resistance factor against Hemileia vastatrix.
叶绿体蛋白 HCF164 预计与 Coffea SH9 对 Hemileia badatrix 的抗性因子相关。
- DOI:http://dx.10.1038/s41598-023-41950-4
- 发表时间:2023
- 期刊:
- 影响因子:4.6
- 作者:Guerra
- 通讯作者:Guerra
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ana Sofia Fernandes De Oliveira其他文献
Ana Sofia Fernandes De Oliveira的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
介观尺度下细胞中液液相分离现象的非平衡态机理研究及数值模拟
- 批准号:12147165
- 批准年份:2021
- 资助金额:18 万元
- 项目类别:专项基金项目
时间晶体的量子模拟
- 批准号:11904228
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
快速“淬火”嵌段共聚物体系非平衡态结构演化动力学行为及其机理的理论模拟研究
- 批准号:21973090
- 批准年份:2019
- 资助金额:66 万元
- 项目类别:面上项目
星形高分子流体流变行为的微观机理
- 批准号:21873092
- 批准年份:2018
- 资助金额:65.0 万元
- 项目类别:面上项目
半柔性打结大分子穿过纳米孔道过程的计算机模拟
- 批准号:21863003
- 批准年份:2018
- 资助金额:41.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Nonequilibrium Molecular Dynamics: Theory, Simulations and Applications
非平衡分子动力学:理论、模拟和应用
- 批准号:
1700749 - 财政年份:2016
- 资助金额:
$ 47.02万 - 项目类别:
Continuing Grant
Nonequilibrium Molecular Dynamics: Theory, Simulations and Applications
非平衡分子动力学:理论、模拟和应用
- 批准号:
1565902 - 财政年份:2016
- 资助金额:
$ 47.02万 - 项目类别:
Continuing Grant
Nonequilibrium Molecular Dynamics Simulations of Structured Colloidal Particles
结构化胶体颗粒的非平衡分子动力学模拟
- 批准号:
1112067 - 财政年份:2011
- 资助金额:
$ 47.02万 - 项目类别:
Standard Grant
Simulations of structure and nonequilibrium dynamics of soft materials
软材料的结构和非平衡动力学模拟
- 批准号:
327247-2006 - 财政年份:2010
- 资助金额:
$ 47.02万 - 项目类别:
Discovery Grants Program - Individual
Simulations of the advanced structures of solar cells using nonequilibrium greens functions method
使用非平衡格林函数方法模拟太阳能电池的先进结构
- 批准号:
403733-2010 - 财政年份:2010
- 资助金额:
$ 47.02万 - 项目类别:
Interaction Grants Program