CoralChem - The Mechanics of Coral Calcification Revealed by a Novel Electrochemical Tool Kit

CoralChem - 新型电化学工具套件揭示了珊瑚钙化的机制

基本信息

  • 批准号:
    BB/X003507/1
  • 负责人:
  • 金额:
    $ 23.06万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Tropical coral reefs are a very important marine ecosystem contributing $30billion in ecosystem services each year worldwide. They are diversity hotspots, offer coastal protection and sustain important economic activities like fisheries and tourism. Despite being some of the largest bioconstructions on the planet, the 3D framework which underpins their ecosystem function is constructed by stony corals in a space about 1/10th of the width of a human hair sandwiched between the living coral and the existing calcium carbonate skeleton. Coral reefs face a multitude of anthropogenic threats on a range of scales from local pollution and over fishing to global warming and ocean acidification. In order to best predict the fate of these important ecosystems in the face of continued anthropogenic change and to ensure the most effective local mitigation efforts are carried out to conserve them, we need to better understand how they build their skeletons. Through laboratory studies where corals are subjected to simulations of the future (e.g. water temperature is increased, or pH lowered, or both) we have good evidence that coral calcification will be much reduced in the warm, acidic oceans of our future. However, exactly what our future holds is uncertain and the environmental change they will face is, and will be, multifaceted, multifactorial and synergistic involving simultaneous changes in water temperature, acidity, nutrient levels, sea level, light levels and food supply, amongst others. So much so, extrapolating the simple laboratory experiments where one variable is changed at time to predict what coral reefs will be like in the future is fraught with uncertainty. Instead a mechanistic understanding is required such that the processes involved in skeletal construction, and their environmental sensitivities, can be encoded in a numerical model to more accurately predict the fate of this important ecosystem. What is needed to achieve this are new ways to sense the processes occurring in the tiny space sandwiched between the coral animal and existing skeleton. Although small probes can be inserted into this space they frequently break which makes such research difficult, frustrating and expensive, and it is hard to work out exactly where you are within the coral animal - especially since the coral is a living organism inhabiting a moving fluid (seawater). As a result, such measurements are far from routine and are reported in only a handful of publications. Consequently, our current understanding is insufficient to predict how corals will respond to anthropogenic stressors.In this proposal we will make a robust, low cost, solid-state microelectrode that senses pH more reliably than those currently commercially available and one that will resist breakage more easily. By controlling this electrode with a novel self-positioning system we will know exactly how close the skeleton is from the electrode tip and we will be able to maintain its position allowing us to make prolonged and reliable measurements of the evolution of pH in the calcifying fluid for the first time. This advance draws on developments in the field of scanning electrochemical microscopy and uses the sensing tip like a radar to determine its distance from the skeleton (and other layers in the coral cellular structure). This proposal is an important first step towards being able to reliably measure the carbonate system in the calcifying space of corals so as to better identify the mechanics of calcification. Performing measurements within the calcifying coral cavity will present challenges but the probe we propose has good potential for commercialisation for a wide range of applications beyond the scope of this project, especially in field locations (e.g. on a research ship, in a field station, or marine biology lab) that are common in the environmental sciences but present a significant challenge to existing technology.
热带珊瑚礁是非常重要的海洋生态系统,每年为全球贡献 300 亿美元的生态系统服务。它们是多样性热点,提供海岸保护并维持渔业和旅游业等重要经济活动。尽管是地球上最大的生物建筑之一,但支撑其生态系统功能的 3D 框架是由石珊瑚构建的,其空间大约为人类头发宽度的 1/10,夹在活珊瑚和现有的碳酸钙骨架之间。珊瑚礁面临着多种程度的人为威胁,从局部污染和过度捕捞到全球变暖和海洋酸化。为了更好地预测这些重要生态系统在面临持续的人为变化时的命运,并确保采取最有效的当地缓解措施来保护它们,我们需要更好地了解它们是如何构建骨架的。通过对珊瑚进行未来模拟的实验室研究(例如,水温升高,或 pH 值降低,或两者兼而有之),我们有充分的证据表明,在未来温暖、酸性的海洋中,珊瑚钙化将大大减少。然而,我们的未来究竟会怎样是不确定的,他们将面临的环境变化是、将来也是多方面、多因素和协同作用的,涉及水温、酸度、营养水平、海平面、光照水平和食物供应等的同时变化。因此,通过简单的实验室实验(有时改变一个变量来预测珊瑚礁未来的样子)进行推断充满了不确定性。相反,需要一种机械理解,以便可以将骨骼构建过程及其环境敏感性编码到数值模型中,以更准确地预测这个重要生态系统的命运。要实现这一目标,需要新的方法来感知夹在珊瑚动物和现有骨骼之间的微小空间中发生的过程。虽然小型探针可以插入这个空间,但它们经常会破裂,这使得此类研究变得困难、令人沮丧和昂贵,而且很难准确地确定你在珊瑚动物体内的位置 - 特别是因为珊瑚是居住在移动液体中的活生物体(海水)。因此,此类测量远非常规,并且只有少数出版物进行了报道。因此,我们目前的了解不足以预测珊瑚将如何应对人为压力源。在这项提案中,我们将制造一种坚固、低成本的固态微电极,它比目前市售的微电极更可靠地感应 pH 值,并且更不易破损。容易地。通过使用新型自定位系统控制该电极,我们将准确地知道骨架与电极尖端的距离,并且我们将能够保持其位置,从而能够对钙化液中 pH 值的演变进行长期可靠的测量首次。这一进步借鉴了扫描电化学显微镜领域的发展,并使用像雷达一样的传感尖端来确定其与骨骼(以及珊瑚细胞结构中的其他层)的距离。该提议是朝着能够可靠地测量珊瑚钙化空间中的碳酸盐系统从而更好地确定钙化机制迈出的重要的第一步。在钙化珊瑚腔内进行测量将带来挑战,但我们提出的探头具有良好的商业化潜力,可用于超出本项目范围的广泛应用,特别是在野外地点(例如,在研究船、野外站或海洋生物学实验室)在环境科学中很常见,但对现有技术提出了重大挑战。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gavin Foster其他文献

The dual diagnosis clinician shared care model – a clinical mental health dual diagnosis integrated treatment initiative
双诊断临床医生共享护理模式——临床心理健康双诊断综合治疗倡议
T Plio-Pleistocene pCO_2-a multiproxy approach using alkenone and boron based carbonate system proxies
T Plio-更新世 pCO_2-使用烯酮和硼基碳酸盐系统代理的多代理方法
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gavin Foster; Osamu Seki; Daniela N. Schmidt; Kimitaka Kawamira; Richard D. Pancost
  • 通讯作者:
    Richard D. Pancost
Ignoring "The Tempest": Pepys, Dryden, and the Politics of Spectating in 1667
忽视“暴风雨”:佩皮斯、德莱顿和 1667 年的观看政治
  • DOI:
    10.2307/3817862
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    0.3
  • 作者:
    Gavin Foster
  • 通讯作者:
    Gavin Foster

Gavin Foster的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gavin Foster', 18)}}的其他基金

C-FORCE: Carbon-Cycle Feedbacks from Response to Carbon Emissions
C-FORCE:碳排放响应的碳循环反馈
  • 批准号:
    NE/W009552/1
  • 财政年份:
    2022
  • 资助金额:
    $ 23.06万
  • 项目类别:
    Research Grant
The Time Of flight Isotopic and elemental Concentration (TOPIC) Facility for nano- to micrometer scale analysis of Earth and anthropogenic materials
用于地球和人类材料纳米至微米级分析的飞行时间同位素和元素浓度 (TOPIC) 设施
  • 批准号:
    NE/T008814/1
  • 财政年份:
    2019
  • 资助金额:
    $ 23.06万
  • 项目类别:
    Research Grant
SWEET:Super-Warm Early Eocene Temperatures and climate: understanding the response of the Earth to high CO2 through integrated modelling and data
SWEET:始新世早期超温暖温度和气候:通过综合建模和数据了解地球对高二氧化碳的反应
  • 批准号:
    NE/P019048/1
  • 财政年份:
    2017
  • 资助金额:
    $ 23.06万
  • 项目类别:
    Research Grant
What caused the Mid Pleistocene Transition? Insights from a new high resolution CO2 record
是什么导致了中更新世过渡?
  • 批准号:
    NE/P011381/1
  • 财政年份:
    2017
  • 资助金额:
    $ 23.06万
  • 项目类别:
    Research Grant
Where did all the CO2 go? Insights from boron isotopes in deep-sea corals
所有的二氧化碳都去哪儿了?
  • 批准号:
    NE/J021075/1
  • 财政年份:
    2012
  • 资助金额:
    $ 23.06万
  • 项目类别:
    Research Grant
Descent into the Icehouse
下降到冰库
  • 批准号:
    NE/I005595/1
  • 财政年份:
    2011
  • 资助金额:
    $ 23.06万
  • 项目类别:
    Research Grant
Abrupt Ocean Acidification Events
海洋突然酸化事件
  • 批准号:
    NE/H017356/1
  • 财政年份:
    2010
  • 资助金额:
    $ 23.06万
  • 项目类别:
    Research Grant
Testing ice sheet models and modelled estimates of Earth's climate sensitivity using Miocene palaeoclimate data
使用中新世古气候数据测试冰盖模型和地球气候敏感性的模型估计
  • 批准号:
    NE/I006176/1
  • 财政年份:
    2010
  • 资助金额:
    $ 23.06万
  • 项目类别:
    Research Grant
Climate Change and the Oceans
气候变化与海洋
  • 批准号:
    NE/D00876X/2
  • 财政年份:
    2009
  • 资助金额:
    $ 23.06万
  • 项目类别:
    Fellowship
Climate Change and the Oceans
气候变化与海洋
  • 批准号:
    NE/D00876X/1
  • 财政年份:
    2006
  • 资助金额:
    $ 23.06万
  • 项目类别:
    Fellowship

相似国自然基金

高性能珊瑚混凝土动态力学特性及抗侵彻性能研究
  • 批准号:
    52371299
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
珊瑚礁砂混合体宏细观力学性能及尺度效应研究
  • 批准号:
    41877267
  • 批准年份:
    2018
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
适应海洋环境的智能复材增强海砂珊瑚混凝土结构静动力学性能研究
  • 批准号:
    51878420
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
FRP筋海水珊瑚骨料混凝土力学性能与耐久性能研究
  • 批准号:
    51778591
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
飞机荷载下珊瑚礁钙质砂路基土动力学参数与残余应变模型试验研究
  • 批准号:
    41602322
  • 批准年份:
    2016
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Effects of herbivorous damselfish on recovery of the coral community disturbed by a mass bleaching event
草食雀鲷对受大规模白化事件干扰的珊瑚群落恢复的影响
  • 批准号:
    17K07568
  • 财政年份:
    2017
  • 资助金额:
    $ 23.06万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Early Metazoan Nano-collagens for Promotion of Wound Healing
早期后生动物纳米胶原蛋白促进伤口愈合
  • 批准号:
    8607898
  • 财政年份:
    2011
  • 资助金额:
    $ 23.06万
  • 项目类别:
Early Metazoan Nano-collagens for Promotion of Wound Healing
早期后生动物纳米胶原蛋白促进伤口愈合
  • 批准号:
    8212104
  • 财政年份:
    2011
  • 资助金额:
    $ 23.06万
  • 项目类别:
Early Metazoan Nano-collagens for Promotion of Wound Healing
早期后生动物纳米胶原蛋白促进伤口愈合
  • 批准号:
    8423396
  • 财政年份:
    2011
  • 资助金额:
    $ 23.06万
  • 项目类别:
Early Metazoan Nano-collagens for Promotion of Wound Healing
早期后生动物纳米胶原蛋白促进伤口愈合
  • 批准号:
    8042806
  • 财政年份:
    2011
  • 资助金额:
    $ 23.06万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了