Fighting Infection and AMR in broiler farming: AI, omics and smart sensing for diagnostics, treatment selection and gut microbiome improvement

肉鸡养殖中抗击感染和抗菌素耐药性:用于诊断、治疗选择和肠道微生物组改善的人工智能、组学和智能传感

基本信息

  • 批准号:
    BB/W020424/1
  • 负责人:
  • 金额:
    $ 25.69万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    已结题

项目摘要

The fight against enteric infections while containing the uprise of antimicrobial resistance, represents one of the major challenges in contemporary broiler farming, with repercussions on both bird and consumer's health. Key to future, better solutions for surveillance, diagnostics and treatment selection, is to gain an improved understanding of the bird's gut microbiome, exploring the modifications its population of commensals and opportunistic pathogens undergo as a consequence of infection, treatment and development of resistant traits. In this project, we plan to explore the broiler gut microbiome, focusing on infection and resistance in relation to pathogens typically found in the gastrointestinal tract of the birds: Clostridium perfringens, Enterococcus cecorum, Escherichia coli and Salmonella spp. We cover also scenarios of co-infection with viruses causing dysbiosis of gut microbiome. We consider resistance/susceptibility to 8 classes of antibiotics: tetracyclines, sulphonamides, beta-lactams, fluoroquinolones, polymyxins, macrolides, diaminopyrimidines, aminoglycosides, whose use as therapeutics is diffused in the UK. We plan to collect a large amount of heterogeneous data from farms, feed and birds, covering normal production periods and infection events. Data will include results of microbiological analysis, whole-genome sequencing, shotgun metagenomics and phenotyping performed on faecal samples, on-farm management practices, as well as environmental sensor data and bird imaging. We propose to use machine learning and cloud computing to perform large-scale data mining and ultimately unravel the network of possible interactions amongst the observable variables, following broilers along their life cycle, and capturing episodes of infection, treatment and development of single or multi-drug resistance. Acquired knowledge may provide hints at the selection of observable variables acting as biomarkers, i.e, targetable by future solutions for real-time livestock monitoring, to detect/forecast infection or the presence/insurgence of resistant traits, and to support precision diagnostics and bespoke treatment selection. The results may also suggest routes to improve the birds gut microbiome, for example via feed additives, making it more robust to infection while at the same time inhibiting the development of resistance.
对抗肠道感染,同时遏制抗菌素耐药性的上升,是当代肉鸡养殖面临的主要挑战之一,对禽类和消费者的健康都有影响。未来更好的监测、诊断和治疗选择解决方案的关键是更好地了解禽类肠道微生物组,探索其共生菌和机会性病原体种群因感染、治疗和耐药性状的发展而发生的变化。在这个项目中,我们计划探索肉鸡肠道微生物群,重点关注鸟类胃肠道中常见病原体的感染和抵抗力:产气荚膜梭菌、盲肠球菌、大肠杆菌和沙门氏菌。我们还介绍了导致肠道微生物群失调的病毒共同感染的情况。我们考虑对 8 类抗生素的耐药性/敏感性:四环素类、磺胺类、β-内酰胺类、氟喹诺酮类、多粘菌素类、大环内酯类、二氨基嘧啶类、氨基糖苷类,这些抗生素在英国广泛用作治疗药物。我们计划从农场、饲料和鸟类收集大量异质数据,涵盖正常生产时期和感染事件。数据将包括微生物分析、全基因组测序、鸟枪法宏基因组学和粪便样本表型分析的结果、农场管理实践以及环境传感器数据和鸟类成像。我们建议使用机器学习和云计算来执行大规模数据挖掘,并最终揭示可观察变量之间可能相互作用的网络,跟踪肉鸡的整个生命周期,并捕获单个或多个感染、治疗和发展的事件。耐药性。获得的知识可能会为选择可观察变量作为生物标志物提供线索,即未来实时牲畜监测解决方案的目标,检测/预测感染或抗性性状的存在/暴动,并支持精确诊断和定制治疗选择。研究结果还可能提出改善鸟类肠道微生物群的途径,例如通过饲料添加剂,使其更能抵抗感染,同时抑制耐药性的发展。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tania Dottorini其他文献

Application of deep learning for livestock behaviour recognition: A systematic literature review
深度学习在牲畜行为识别中的应用:系统文献综述
  • DOI:
    10.48550/arxiv.2310.13483
  • 发表时间:
    2023-10-20
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ali Rohan;M. S. Rafaq;Md Junayed Hasan;Furqan Asghar;Ali Kashif Bashir;Tania Dottorini
  • 通讯作者:
    Tania Dottorini
The INSL3-LGR8/GREAT ligand-receptor pair in human cryptorchidism.
人类隐睾中的 INSL3-LGR8/GREAT 配体-受体对。
  • DOI:
    10.1210/jc.2003-030359
  • 发表时间:
    2003-09-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Ferlin;Mauro Simonato;Lucia Bartoloni;Giorgia Rizzo;A. Bettella;Tania Dottorini;Bruno Dallapiccola;Carlo Foresta
  • 通讯作者:
    Carlo Foresta
Accurate prediction of calving in dairy cows by applying feature engineering and machine learning.
应用特征工程和机器学习准确预测奶牛产犊。
  • DOI:
    10.1016/j.prevetmed.2023.106007
  • 发表时间:
    2023-08-01
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    J. A. Vázquez;Julien Gruhier;G. Miguel;Martin I. Green;Tania Dottorini;J. Kaler
  • 通讯作者:
    J. Kaler
A Novel PTPN11 mutation in LEOPARD syndrome
LEOPARD 综合征中的新 PTPN11 突变
  • DOI:
    10.1002/humu.9149
  • 发表时间:
    2003-06-01
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    E. Conti;Tania Dottorini;A. Sarkozy;G. E. Tiller;Giorgia Esposito;Antonio Pizzuti;Bruno Dallapiccola
  • 通讯作者:
    Bruno Dallapiccola

Tania Dottorini的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tania Dottorini', 18)}}的其他基金

FightAMR: Novel global One Health surveillance approach to fight AMR using Artificial Intelligence and big data mining
FightAMR:利用人工智能和大数据挖掘对抗 AMR 的新型全球统一健康监测方法
  • 批准号:
    MR/Y034422/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25.69万
  • 项目类别:
    Research Grant
Monitoring the gut microbiome via AI and omics: a new approach to detect infection and AMR and to support novel therapeutics in broiler precision farm
通过人工智能和组学监测肠道微生物组:一种检测感染和抗菌素耐药性并支持肉鸡精准农场新疗法的新方法
  • 批准号:
    BB/X017370/1
  • 财政年份:
    2023
  • 资助金额:
    $ 25.69万
  • 项目类别:
    Research Grant
Tackling the pandemic of antibiotic-resistant infections: An artificial intelligence approach to new druggable therapeutic targets and drug discovery
应对抗生素耐药性感染的流行:利用人工智能方法实现新的药物治疗靶点和药物发现
  • 批准号:
    MR/X009246/1
  • 财政年份:
    2023
  • 资助金额:
    $ 25.69万
  • 项目类别:
    Research Grant

相似国自然基金

SIRT1通过TXNIP/NLRP3通路促进巨噬细胞自噬在烟曲霉感染中的作用及机制研究
  • 批准号:
    82360624
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
丙酸下调SpaH型菌毛表达抑制围生期GBS感染的分子机制研究
  • 批准号:
    82301942
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于共价有机框架的噬菌体-光催化协同靶向抗菌策略用于顽固性细菌感染的研究
  • 批准号:
    22378279
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
不同新冠疫苗免疫史人群在Omicron突破感染后记忆B细胞的应答机制研究
  • 批准号:
    32370944
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
酪氨酸激酶Yes1在呼吸道合胞病毒感染中的作用及其分子机制的研究
  • 批准号:
    82371779
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目

相似海外基金

Monitoring the gut microbiome via AI and omics: a new approach to detect infection and AMR and to support novel therapeutics in broiler precision farm
通过人工智能和组学监测肠道微生物组:一种检测感染和抗菌素耐药性并支持肉鸡精准农场新疗法的新方法
  • 批准号:
    BB/X017370/1
  • 财政年份:
    2023
  • 资助金额:
    $ 25.69万
  • 项目类别:
    Research Grant
Phage mitigation of Klebsiella infection: a new approach for AMR
噬菌体缓解克雷伯氏菌感染:AMR 的新方法
  • 批准号:
    2881519
  • 财政年份:
    2023
  • 资助金额:
    $ 25.69万
  • 项目类别:
    Studentship
薬剤耐性菌によるスーパー感染の分子疫学解析と重症化メカニズムの解明
耐药菌引起的重复感染的分子流行病学分析及严重机制的阐明
  • 批准号:
    21K10420
  • 财政年份:
    2021
  • 资助金额:
    $ 25.69万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Defined microbial communities to prevent and eradicate infection by AMR pathogens
定义微生物群落以预防和根除 AMR 病原体感染
  • 批准号:
    10357969
  • 财政年份:
    2021
  • 资助金额:
    $ 25.69万
  • 项目类别:
蛋白付着抑制コートはバイオフィルム形成を阻止しカテーテルへの細菌付着を妨げるか?
蛋白质粘附抑制涂层是否可以防止生物膜形成并防止细菌粘附到导管上?
  • 批准号:
    21K07015
  • 财政年份:
    2021
  • 资助金额:
    $ 25.69万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了