Establishing a cryogenic correlative light-electron microscopy hub for Oxford
为牛津建立低温关联光电子显微镜中心
基本信息
- 批准号:BB/X019276/1
- 负责人:
- 金额:$ 75.97万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
We are asking for equipment which will allow us to see inside cells in unprecedented detail.Cells are extraordinary, varied and dynamic and they make up all living things. A major focus of biosciences research is to understand the varying structures of cells, allowing us to understand how they are constructed and how they change during fundamental processes, such as replication. We also need to understand how cells interact with each other, for example as the immune system detects a pathogen or as nerve cells connect to create a signalling synapse. To do this, we need to be able to observe the architecture and internal structures of cells, as well as to pin-point the locations of important molecules, and how their positions alter as cells change and interact.Electron microscopes can be used to provide highly detailed views of cells and biological material and are much more precise than light microscopes. However, this brings challenges. The inside of an electron microscope is in a vacuum, in which living organisms cannot survive. It is therefore necessary to prepare a biological sample carefully before it can be studied in this way. The best solution is to freeze the sample and to maintain it in very cold conditions throughout imaging. This is called cryogenic electron microscopy, or cryo-EM. A second challenge is that cells are too thick to study in an electron microscope as the electrons cannot pass through a cell. To solve this, we make thin layers, which cut through frozen cells. These lamella are thin enough to image. Finally, cells are large and complex and the images taken on electron microscopes are therefore crowded. It can be hard to find what we want to look at. To solve this, we can use a technique called correlative light-electron microscopy (cryo-CLEM). Here, the things which we want to study are labelled using a fluorescent marker and we can observe the cells using a fluorescence microscope to see where the marker is. We can then make thin layers of the cell, focusing in on the region with the fluorescence signal and can image them in an electron microscope. By correlating the images from the fluorescence and electron microscope we can get much more information, combining the higher resolution of the electron microscopy with the targeted detected capability which comes from fluorescence labelling. Within our cryo-EM facility, we already have the equipment required to solve the first two of these challenges and we are asking for the microscope and associated equipment to allow us to conduct fluorescence microscopy under cryogenic conditions. This equipment will be used by many researchers from across Oxford, to answer all kinds of questions about biology. They will image the sites where neurons contact each other and see how their molecules arrange as the cells are trying to find their way to make the right contacts. They will image the genomes of bacteria and see how they change when the bacteria are exposed to antibiotics. They will see how cells move their chromosomes around in processes which go wrong in cancer. They will understand how the compartments within cells contact and communicate with one another and they will observe what happens when parasites contact human cells and when immune cells contact pathogens. The capability provided by cryo-CLEM will allow us to see inside cells in a new way, to discover how they drive these, and many more, processes needed for life.
我们要求设备,这将使我们能够以前所未有的细节看到内部单元格。细胞是非凡的,多样的和动态的,它们构成了所有生物。生物科学研究的主要重点是了解细胞的不同结构,使我们能够了解它们的构造方式以及它们在基本过程中的变化(例如复制)。我们还需要了解细胞如何相互作用,例如,由于免疫系统检测到病原体或神经细胞连接以创建信号传导突触。为此,我们需要能够观察细胞的结构和内部结构,以及固定重要分子的位置,以及它们的位置如何随着细胞的变化和相互作用而发生变化。电子显微镜可用于提供细胞和生物学材料的高度详细视图,并且比光显微镜更精确。但是,这带来了挑战。电子显微镜的内部在真空中,其中活体无法生存。因此,有必要在以这种方式研究生物样品之前仔细准备生物样品。最好的解决方案是在整个成像过程中冻结样品并将其保持在非常寒冷的条件下。这称为低温电子显微镜或冷冻EM。第二个挑战是细胞太厚,无法在电子显微镜中研究,因为电子无法通过细胞。为了解决这个问题,我们制作薄层,切成冷冻的细胞。这些薄片足够薄到形象。最后,细胞是大而复杂的,因此在电子显微镜上拍摄的图像被拥挤。很难找到我们要看的东西。为了解决这个问题,我们可以使用一种称为相关光电子显微镜(Cryo-Clem)的技术。在这里,我们要研究的内容使用荧光标记物进行标记,我们可以使用荧光显微镜观察细胞以查看标记在哪里。然后,我们可以将细胞的薄层变成细胞,并用荧光信号聚焦在区域上,并可以在电子显微镜中对其进行成像。通过将来自荧光和电子显微镜的图像相关联,我们可以获得更多信息,将电子显微镜的更高分辨率与来自荧光标记的靶向检测能力相结合。在我们的低温EM设施中,我们已经拥有解决这些挑战的前两个所需的设备,并且我们要求使用显微镜和相关设备,以使我们能够在低温条件下进行荧光显微镜。牛津各地的许多研究人员将使用该设备来回答有关生物学的各种问题。他们将图像神经元相互接触的位点,并查看它们的分子如何在细胞试图找到正确接触的方式时安排。他们将对细菌的基因组进行图像,并查看细菌暴露于抗生素时如何变化。他们将看到细胞如何在癌症中出错的过程中移动其染色体。他们将了解细胞内的隔室如何接触并相互通信,并观察到寄生虫接触人类细胞以及免疫细胞接触病原体时会发生什么。冷冻-CLEM提供的能力将使我们能够以新的方式看到内部单元格,以发现它们如何驱动它们以及更多的生命过程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Higgins其他文献
Interpretive Play and the Player Psychology of Optimal Arousal Regulation
解释性游戏和最佳唤醒调节的玩家心理
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Matthew Higgins;Peter Howell - 通讯作者:
Peter Howell
Novel methodologies for determining a suitable polymer for effective sludge dewatering
- DOI:
10.1016/j.jece.2018.06.012 - 发表时间:
2018-08-01 - 期刊:
- 影响因子:
- 作者:
Vu Hien Phuong To;Tien Vinh Nguyen;Saravanamuthu Vigneswaran;Heriberto Bustamante;Matthew Higgins;Derek van Rys - 通讯作者:
Derek van Rys
Inside looking out or outside looking in?: an evaluation of visualisation modalities to support the creation of a substitutional virtual environment
向内看还是向外看?:对支持替代虚拟环境创建的可视化方式的评估
- DOI:
10.1145/3206505.3206529 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Jose F. Garcia;A. Simeone;Matthew Higgins;W. Powell;V. Powell - 通讯作者:
V. Powell
IT IS MORE THAN A GAME: AN ETHNOGRAPHY OF COMMUNICATION TREATMENT OF RESILIENCE AS A KEY ELEMENT OF BASKETBALL CULTURE
它不仅仅是一场比赛:沟通的民族志将韧性视为篮球文化的关键要素
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Matthew Higgins - 通讯作者:
Matthew Higgins
The Income Implications of Rising U.S. International Liabilities
美国国际负债上升对收入的影响
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:1.2
- 作者:
Matthew Higgins;T. Klitgaard;C. Tille - 通讯作者:
C. Tille
Matthew Higgins的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Higgins', 18)}}的其他基金
Structural studies of Plasmodium PIR proteins and their interactions with human inhibitory immune receptors
疟原虫 PIR 蛋白的结构研究及其与人类抑制性免疫受体的相互作用
- 批准号:
MR/T000368/1 - 财政年份:2020
- 资助金额:
$ 75.97万 - 项目类别:
Research Grant
Structure guided design of a transmission-blocking malaria vaccine targeting Pfs48/45
针对 Pfs48/45 的阻断传播疟疾疫苗的结构引导设计
- 批准号:
MR/R001138/1 - 财政年份:2017
- 资助金额:
$ 75.97万 - 项目类别:
Research Grant
The molecular mechanism for trypanosome cell death induced by ApoLI and its inactivation in human infective T. b. rhodesiense.
ApoLI 诱导锥虫细胞死亡的分子机制及其在人类感染性锥虫中的失活。
- 批准号:
MR/P001424/1 - 财政年份:2016
- 资助金额:
$ 75.97万 - 项目类别:
Research Grant
Structural studies of the clustering of PfEMP1 proteins on the surface of Plasmodium falciparum-infected erythrocytes
恶性疟原虫感染红细胞表面 PfEMP1 蛋白聚集的结构研究
- 批准号:
G0901062/2 - 财政年份:2011
- 资助金额:
$ 75.97万 - 项目类别:
Research Grant
Structural studies of the clustering of PfEMP1 proteins on the surface of Plasmodium falciparum-infected erythrocytes
恶性疟原虫感染红细胞表面 PfEMP1 蛋白聚集的结构研究
- 批准号:
G0901062/1 - 财政年份:2010
- 资助金额:
$ 75.97万 - 项目类别:
Research Grant
Interactions of Exocellular Proteins, Polysaccharide and Cations During Bioflocculation in Suspended Growth Bioreactors
悬浮生长生物反应器中生物絮凝过程中胞外蛋白、多糖和阳离子的相互作用
- 批准号:
9907333 - 财政年份:1999
- 资助金额:
$ 75.97万 - 项目类别:
Standard Grant
相似国自然基金
体相关联表面调控低负载钯基催化剂构建表面平衡式甲烷低温催化氧化
- 批准号:52300139
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
AIDA亚型特异性亚细胞定位及其在低温相关应激中功能和机制研究
- 批准号:32271216
- 批准年份:2022
- 资助金额:54.00 万元
- 项目类别:面上项目
基于低温基质隔离红外光谱研究克里奇中间体与大气相关小分子的反应机理
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
星际化学相关负离子自由基的低温基质隔离光谱与反应研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
AIDA亚型特异性亚细胞定位及其在低温相关应激中功能和机制研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
相似海外基金
超低体温循環停止における水素吸入の腎保護効果 -グリコカリックス障害の観点から-
超低温停循环中吸氢的肾保护作用——从糖萼紊乱的角度——
- 批准号:
24K12096 - 财政年份:2024
- 资助金额:
$ 75.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
低温偏光変調器を用いた高精度CMB観測によるインフレーション理論の検証
使用低温偏振调制器通过高精度 CMB 观测验证暴胀理论
- 批准号:
24KJ0663 - 财政年份:2024
- 资助金额:
$ 75.97万 - 项目类别:
Grant-in-Aid for JSPS Fellows
耐熱性とプロセス温度の低温化を両立したSiCセラミックスのTLP接合技術の開発
开发兼具耐热性和低加工温度的SiC陶瓷TLP接合技术
- 批准号:
24K08069 - 财政年份:2024
- 资助金额:
$ 75.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
表面イオニクス触媒の創製と低温電場アシスト脱水素触媒反応への応用
表面离子催化剂的制备及其在低温电场辅助脱氢催化反应中的应用
- 批准号:
24K08158 - 财政年份:2024
- 资助金额:
$ 75.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
極低温において誘起される高分子材料および高分子鎖の光変形・光運動の探究
探索极低温下引起的高分子材料和聚合物链的光学变形和光学运动
- 批准号:
24K08516 - 财政年份:2024
- 资助金额:
$ 75.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)