Non-linear partial differential equations: Bubbles, layers and stability

非线性偏微分方程:气泡、层和稳定性

基本信息

  • 批准号:
    DP170103087
  • 负责人:
  • 金额:
    $ 24.14万
  • 依托单位:
  • 依托单位国家:
    澳大利亚
  • 项目类别:
    Discovery Projects
  • 财政年份:
    2017
  • 资助国家:
    澳大利亚
  • 起止时间:
    2017-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

This project aims to investigate non-linear elliptic partial differential equations in well-established models in applied sciences. The treatment of them challenges the existing mathematical theory. This project will enrich and expand the mathematical theory in semi-linear elliptic equations to understand the equations under investigation.
该项目旨在研究应用科学良好模型中的非线性椭圆偏微分方程。对它们的处理挑战了现有的数学理论。该项目将在半线性椭圆方程中丰富和扩展数学理论,以了解所研究的方程。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Prof Yihong Du其他文献

Prof Yihong Du的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Prof Yihong Du', 18)}}的其他基金

Nonlinear partial differential equations and propagation phenomena
非线性偏微分方程和传播现象
  • 批准号:
    DP220101820
  • 财政年份:
    2022
  • 资助金额:
    $ 24.14万
  • 项目类别:
    Discovery Projects
Propagation via nonlinear partial differential equations
通过非线性偏微分方程的传播
  • 批准号:
    DP190103757
  • 财政年份:
    2019
  • 资助金额:
    $ 24.14万
  • 项目类别:
    Discovery Projects
Propagation described by partial differential equations with free boundary
自由边界偏微分方程描述的传播
  • 批准号:
    DP150101867
  • 财政年份:
    2015
  • 资助金额:
    $ 24.14万
  • 项目类别:
    Discovery Projects
Propagation and free boundary problems in nonlinear partial differential equations
非线性偏微分方程中的传播和自由边界问题
  • 批准号:
    DP120100727
  • 财政年份:
    2012
  • 资助金额:
    $ 24.14万
  • 项目类别:
    Discovery Projects
Transitions and singular behaviour in nonlinear partial differential equations
非线性偏微分方程中的转移和奇异行为
  • 批准号:
    DP1093638
  • 财政年份:
    2010
  • 资助金额:
    $ 24.14万
  • 项目类别:
    Discovery Projects
Sharp transitions in partial differential equations and related problems
偏微分方程中的急剧转变及相关问题
  • 批准号:
    DP0772693
  • 财政年份:
    2007
  • 资助金额:
    $ 24.14万
  • 项目类别:
    Discovery Projects
Free boundary problems in partial differential equations and related topics
偏微分方程中的自由边界问题及相关主题
  • 批准号:
    DP0344111
  • 财政年份:
    2003
  • 资助金额:
    $ 24.14万
  • 项目类别:
    Discovery Projects

相似国自然基金

精准医疗中的显著性检验问题:基于高维部分线性模型
  • 批准号:
    12301331
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
部分相干光的二阶及三阶非线性调控研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
具非局部分数阶耗散的非线性波动方程的整体适定性和吸引子
  • 批准号:
    12171438
  • 批准年份:
    2021
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
基于部分状态反馈的复杂非线性不确定系统有限时间控制
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    59 万元
  • 项目类别:
    面上项目
Banach空间(部分)耗散非线性耦合系统的不变流形及有限维约化
  • 批准号:
    11971317
  • 批准年份:
    2019
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Imaging Epilepsy Sources with Biophysically Constrained Deep Neural Networks
使用生物物理约束的深度神经网络对癫痫源进行成像
  • 批准号:
    10655833
  • 财政年份:
    2023
  • 资助金额:
    $ 24.14万
  • 项目类别:
Non-linear partial differential equations, stochastic representations, and numerical approximation by deep learning
非线性偏微分方程、随机表示和深度学习数值逼近
  • 批准号:
    EP/W004070/1
  • 财政年份:
    2021
  • 资助金额:
    $ 24.14万
  • 项目类别:
    Research Grant
Regularity, Stability, and Uniqueness Questions for Certain Non-Linear Partial Differential Equations
某些非线性偏微分方程的正则性、稳定性和唯一性问题
  • 批准号:
    1956092
  • 财政年份:
    2020
  • 资助金额:
    $ 24.14万
  • 项目类别:
    Standard Grant
Singularity formations in non linear partial differential equations
非线性偏微分方程中的奇异性形成
  • 批准号:
    2278691
  • 财政年份:
    2019
  • 资助金额:
    $ 24.14万
  • 项目类别:
    Studentship
Analysis of Non-Linear Partial Differential Equations in Free Boundary Fluid Dynamics and Kinetic Theory
自由边界流体动力学和运动理论中非线性偏微分方程的分析
  • 批准号:
    1764177
  • 财政年份:
    2018
  • 资助金额:
    $ 24.14万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了