The architecture and evolution of host control in a microbial symbiosis
微生物共生中宿主控制的结构和进化
基本信息
- 批准号:BB/X016439/1
- 负责人:
- 金额:$ 83.81万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Beneficial symbioses are widespread in nature and underpin the function of both natural and manmade ecosystems. Moreover, by providing the interacting species with new ecological functions, symbiosis represents an important source of innovation and has thus played a crucial role in the evolution of life on Earth. In endosymbiosis, endosymbiont cells live within host cells and, as such, hosts have evolved mechanisms to control these endosymbionts, collectively termed "host control". However, despite decades of study, the molecular mechanisms that hosts use to control their endosymbionts remain poorly understood. In particular, how the architecture of host control systems has evolved to provide hosts with sufficient flexibility to respond to changing conditions whilst also being evolutionarily robust is unknown for any symbiosis. Experimental studies of these questions in many symbioses are challenging because symbiotic organisms are not easily cultured independently nor typically amenable to genetic manipulation. In this project we overcome these challenges by using an experimentally tractable microbial symbiosis between the single-celled ciliate host Paramecium and the green alga Chlorella for which we have developed tools to "knockdown" the expression of target genes. In this symbiosis, hosts exchange nitrogen compounds derived from heterotrophy for carbohydrates from algal photosynthesis. In previous work we discovered that hosts modulate the number of algal symbionts in response to light intensity to maximise their fitness gains, but how hosts exert this control is not clear. In preliminary experiments for this proposal, we have discovered two putative mechanisms of host control, combining both positive and negative control levers, that hosts appear to use to regulate the number of algal symbionts per host cell. We predict that such multi-layered host control enables more precise regulation of endosymbiont number across environmental gradients whilst also providing a degree of redundancy so that the system has greater evolutionary robustness. To test these ideas, we will perform "gene knockdown" experiments to disrupt either each individual or both host control mechanisms and measure how this affects host growth, plasticity and fitness. Using cutting edge molecular methods, we will discover how each of the host control mechanisms works through understanding their effect on gene regulation and metabolism in both the host and symbiont. Finally, we will use experimental evolution to discover how the symbiosis recovers from disruption of host control systems, and test whether multiple layers of control enhance evolutionary robustness. Together these experiments will advance our understanding of the biology of symbioses, helping to solve the long-standing evolutionary puzzle of how and why symbioses evolve. In so doing the research will also provide insight into how symbioses and the important functions they perform can be maintained in natural and man-made ecosystems.
有益的共生在自然界中广泛存在,支撑着自然和人造生态系统的功能。此外,通过为相互作用的物种提供新的生态功能,共生代表了创新的重要源泉,因此在地球生命的进化中发挥了至关重要的作用。在内共生中,内共生细胞生活在宿主细胞内,因此,宿主已经进化出控制这些内共生的机制,统称为“宿主控制”。然而,尽管经过了数十年的研究,宿主用来控制内共生体的分子机制仍然知之甚少。特别是,主机控制系统的架构如何发展以向主机提供足够的灵活性来响应不断变化的条件,同时又具有进化鲁棒性,对于任何共生来说都是未知的。在许多共生体中对这些问题的实验研究具有挑战性,因为共生生物体不容易独立培养,通常也不适合基因操作。在这个项目中,我们通过在单细胞纤毛虫宿主草履虫和绿藻小球藻之间使用实验上可处理的微生物共生来克服这些挑战,我们为此开发了“敲低”目标基因表达的工具。在这种共生中,宿主将来自异养的氮化合物交换为来自藻类光合作用的碳水化合物。在之前的工作中,我们发现宿主会根据光强度调节藻类共生体的数量,以最大限度地提高其适应度,但宿主如何发挥这种控制作用尚不清楚。在该提议的初步实验中,我们发现了两种假定的宿主控制机制,结合了正控制杆和负控制杆,宿主似乎用它们来调节每个宿主细胞的藻类共生体的数量。我们预测,这种多层宿主控制能够在环境梯度上更精确地调节内共生体数量,同时还提供一定程度的冗余,使系统具有更大的进化鲁棒性。为了测试这些想法,我们将进行“基因敲低”实验,以破坏每个个体或两个宿主的控制机制,并测量这如何影响宿主的生长、可塑性和适应性。使用尖端的分子方法,我们将通过了解每种宿主控制机制对宿主和共生体基因调控和代谢的影响来发现它们是如何工作的。最后,我们将利用实验进化来发现共生如何从宿主控制系统的破坏中恢复,并测试多层控制是否增强了进化的鲁棒性。这些实验将共同推进我们对共生生物学的理解,帮助解决共生如何以及为何进化的长期存在的进化难题。在此过程中,该研究还将深入了解如何在自然和人造生态系统中维持共生及其所发挥的重要功能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Brockhurst其他文献
Bacteriophage ecology: Getting a head start on genomic competitors
噬菌体生态学:在基因组竞争对手中占据先机
- DOI:
10.1016/j.cub.2023.08.077 - 发表时间:
2023 - 期刊:
- 影响因子:9.2
- 作者:
Claudia Igler;Michael Brockhurst - 通讯作者:
Michael Brockhurst
Michael Brockhurst的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Brockhurst', 18)}}的其他基金
SafePhage: Engineering synthetic phages with intrinsic biocontainment
SafePhage:具有内在生物防护的工程合成噬菌体
- 批准号:
BB/Y007743/1 - 财政年份:2024
- 资助金额:
$ 83.81万 - 项目类别:
Research Grant
Does CRISPR-Cas immunity limit the effectiveness of phage therapy?
CRISPR-Cas 免疫是否会限制噬菌体疗法的有效性?
- 批准号:
BB/T014342/1 - 财政年份:2021
- 资助金额:
$ 83.81万 - 项目类别:
Research Grant
Ecological drivers of the evolution of symbiosis
共生进化的生态驱动因素
- 批准号:
NE/V000128/1 - 财政年份:2021
- 资助金额:
$ 83.81万 - 项目类别:
Research Grant
Plasmid manipulation of bacterial gene regulatory networks
细菌基因调控网络的质粒操作
- 批准号:
BB/R014884/2 - 财政年份:2020
- 资助金额:
$ 83.81万 - 项目类别:
Research Grant
Ecological drivers of intragenomic conflict resolution
基因组内冲突解决的生态驱动因素
- 批准号:
NE/R008825/2 - 财政年份:2020
- 资助金额:
$ 83.81万 - 项目类别:
Research Grant
The evolutionary emergence of multidrug resistant bacterial pathogens
多重耐药细菌病原体的进化出现
- 批准号:
BB/R006253/2 - 财政年份:2020
- 资助金额:
$ 83.81万 - 项目类别:
Research Grant
Plasmid manipulation of bacterial gene regulatory networks
细菌基因调控网络的质粒操作
- 批准号:
BB/R014884/1 - 财政年份:2018
- 资助金额:
$ 83.81万 - 项目类别:
Research Grant
The evolutionary emergence of multidrug resistant bacterial pathogens
多重耐药细菌病原体的进化出现
- 批准号:
BB/R006253/1 - 财政年份:2018
- 资助金额:
$ 83.81万 - 项目类别:
Research Grant
Ecological drivers of intragenomic conflict resolution
基因组内冲突解决的生态驱动因素
- 批准号:
NE/R008825/1 - 财政年份:2018
- 资助金额:
$ 83.81万 - 项目类别:
Research Grant
Ecological drivers of evolutionary transitions in mutualistic symbioses
互利共生进化转变的生态驱动因素
- 批准号:
NE/K011774/2 - 财政年份:2017
- 资助金额:
$ 83.81万 - 项目类别:
Research Grant
相似国自然基金
代理模型融合与迁移的分布式数据驱动进化计算方法
- 批准号:62376097
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
进化视角下黑色旅游游客的心理机制研究
- 批准号:72302157
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
冰期和海流驱动印太交汇区两种马尾藻多样性进化的模式与过程
- 批准号:32371697
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
未知危险场景下智能汽车环境感知系统性能劣化机理分析与自进化提升方法研究
- 批准号:52372408
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
胡杨叶性状适应荒漠化气候的遗传与进化机制
- 批准号:32371838
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
相似海外基金
The architecture and evolution of host control in a microbial symbiosis
微生物共生中宿主控制的结构和进化
- 批准号:
BB/X014657/1 - 财政年份:2024
- 资助金额:
$ 83.81万 - 项目类别:
Research Grant
Evolutionary Systems Biology of Host-Parasite Interactions
宿主-寄生虫相互作用的进化系统生物学
- 批准号:
10716048 - 财政年份:2023
- 资助金额:
$ 83.81万 - 项目类别:
Exploring Tr1-regulated transcription networks underpinning adaptation of pathogenic Anaplasma to the tick host
探索 Tr1 调节的转录网络支持致病性无形体对蜱宿主的适应
- 批准号:
10727435 - 财政年份:2023
- 资助金额:
$ 83.81万 - 项目类别:
The impact of inflammation on HSPC composition and disease progression in chronic myelomonocytic leukemia
炎症对慢性粒单核细胞白血病HSPC组成和疾病进展的影响
- 批准号:
10607598 - 财政年份:2023
- 资助金额:
$ 83.81万 - 项目类别:
Discovering resistance-resistant antimalarial drug target
发现耐药性抗疟药物靶点
- 批准号:
10741535 - 财政年份:2023
- 资助金额:
$ 83.81万 - 项目类别: