Bacterial sphingolipids - revealing hidden biosynthetic pathways of key players in host-microbe interactions.
细菌鞘脂 - 揭示宿主与微生物相互作用中关键参与者的隐藏生物合成途径。
基本信息
- 批准号:BB/V001620/1
- 负责人:
- 金额:$ 51.08万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Animal and bacterial cells have a protective, water-resistant outer shell that is composed of molecules with a water-loving (hydrophilic) head group and a long, water-hating (hydrophobic) tail. This large family of molecules are called lipids and include common things like saturated/unsaturated fats and cholesterol. One particular sub-family of lipids is called sphingolipids (SLs) and their more complex ceramide versions (which have two fatty tails). The SLs not only play structural roles in the outer shell that allow the cell membrane to resist water and let nutrients in and waste out; they are also able to stimulate the human immune system. SL levels are dynamic but also tightly controlled - any increase or decrease in the cellular SL levels is a sign that something has gone wrong. Changes in SL levels are strongly linked with old age and diseases such as Alzheimer's, diabetes, asthma, cancer and nerve-wasting diseases. An exciting area of research with direct implications for human health is the discovery that humans are hosts for many different types of bacteria - collectively these are known as the microbiota/microbiome. Current estimates are that for every human cell in our body, there is a bacterial one. These bacteria can be "bad" and cause disease (e.g. superbugs) but most are "good" bacteria and are beneficial to our well being. These bacteria live in our mouths, on our skin and in our gut and help us metabolise our food and are also thought to play protective roles. A surprising discovery was that the bacteria that live with us produce molecules that allow bacterial and human cells to communicate. One such family of molecules are the SLs - it is highly unusual that human and bacterial cells both make the same molecule and this suggests some sort of evolutionary link. Moreover, it has been calculated that we have several grams of SLs in our gut at any one time and they are making a vital contribution to our health. Recent studies have linked the microbiota to diseases such as diabetes, obesity and cancer.All cells make SLs by a multi-step pathway using simple building blocks - the steps are catalysed (sped up) by molecular machines called enzymes. Research has focussed on the enzymes involved in human SL biosynthesis but very little is known about SL biosynthesis in the microbiota. To fully understand the relationship between us and bacteria we must learn how bacteria make and transport such complex molecules as well as understanding how we metabolise them. We will study how gut and mouth bacteria make SLs with world experts in America and Germany with a collaborator from the UK. We will begin with a study of the enzyme serine palmitoyltransferase (SPT) that uses two main building blocks - an amino acid called L-serine and a long chain fatty acid, to make the first SL intermediate. We will determine the 3D structure of the SPT in each bacterium and compare their shapes and evolution. Of special interest, the structure of the bacterial SLs is unusual and contains distinctive chemical fingerprints and we will investigate their origins by feeding the bacteria heavy versions of the proposed building blocks and tracking their incorporation. Nothing is known about how the microbiota makes unusual branched chain SLs so we will study enzymes that convert can branch-chain amino acids into specific building blocks. Bacteria contain ceramides with an unsusual inositol sugar so we will purify and characterise the enzyme myo-inositol phosphate synthase (MIPS) that uses glucose phosphate as a substrate. At the end of our study we will have begun to define the biosynthetic blueprint of the microbiota. Our results will be of interest to academic microbiologists and chemists as well as those interested in human health. Moreover, a number of drug and healthcare companies are also interested in the microbiome and they could use our knowledge to develop therapies that may have impact on disease and long term well being.
动物和细菌细胞具有保护性防水外壳,该外壳由具有喜水(亲水)头基和长憎水(疏水)尾部的分子组成。这个大分子家族被称为脂质,包括饱和/不饱和脂肪和胆固醇等常见物质。脂质的一个特殊亚家族称为鞘脂 (SL) 及其更复杂的神经酰胺版本(具有两个脂肪尾)。 SL 不仅在外壳中发挥结构作用,使细胞膜能够防水、让营养物质进入和排出;它们还能够刺激人体免疫系统。 SL 水平是动态的,但也受到严格控制 - 细胞 SL 水平的任何增加或减少都是出现问题的迹象。 SL 水平的变化与老年和阿尔茨海默病、糖尿病、哮喘、癌症和神经消耗性疾病等疾病密切相关。对人类健康有直接影响的一个令人兴奋的研究领域是发现人类是许多不同类型细菌的宿主——这些细菌统称为微生物群/微生物组。目前的估计是,我们体内的每一个人体细胞都含有一个细菌细胞。这些细菌可能是“坏”细菌,会引起疾病(例如超级细菌),但大多数是“好”细菌,对我们的健康有益。这些细菌生活在我们的口腔、皮肤和肠道中,帮助我们代谢食物,也被认为发挥保护作用。一个令人惊讶的发现是,与我们生活在一起的细菌会产生允许细菌和人类细胞进行交流的分子。 SL 就是这样的分子家族之一——人类和细菌细胞都产生相同的分子,这是非常不寻常的,这表明存在某种进化联系。此外,据计算,我们的肠道中任何时候都会有几克 SL,它们对我们的健康做出了至关重要的贡献。最近的研究已将微生物群与糖尿病、肥胖症和癌症等疾病联系起来。所有细胞都使用简单的构建模块通过多步骤途径产生 SL - 这些步骤由称为酶的分子机器催化(加速)。研究重点是参与人类 SL 生物合成的酶,但对微生物群中 SL 生物合成知之甚少。为了充分理解我们和细菌之间的关系,我们必须了解细菌如何制造和运输如此复杂的分子,并了解我们如何代谢它们。我们将与美国和德国的世界专家以及英国的合作者一起研究肠道和口腔细菌如何产生 SL。我们将从丝氨酸棕榈酰转移酶 (SPT) 的研究开始,该酶使用两个主要组成部分 - 一种称为 L-丝氨酸的氨基酸和一种长链脂肪酸,来制造第一个 SL 中间体。我们将确定每种细菌中 SPT 的 3D 结构,并比较它们的形状和进化。特别有趣的是,细菌 SL 的结构很不寻常,并且包含独特的化学指纹,我们将通过给细菌喂食拟议构建块的重版本并跟踪它们的掺入来研究其起源。关于微生物群如何产生不寻常的支链 SL,我们一无所知,因此我们将研究将支链氨基酸转化为特定构建块的酶。细菌含有带有不寻常肌醇糖的神经酰胺,因此我们将纯化并表征使用磷酸葡萄糖作为底物的肌醇磷酸合酶 (MIPS)。在我们的研究结束时,我们将开始定义微生物群的生物合成蓝图。我们的研究结果将引起学术微生物学家和化学家以及那些对人类健康感兴趣的人们的兴趣。此外,许多药品和医疗保健公司也对微生物组感兴趣,他们可以利用我们的知识来开发可能对疾病和长期健康产生影响的疗法。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Characterization of inositol lipid metabolism in gut-associated Bacteroidetes.
肠道相关拟杆菌中肌醇脂质代谢的表征。
- DOI:http://dx.10.1038/s41564-022-01152-6
- 发表时间:2022
- 期刊:
- 影响因子:28.3
- 作者:Heaver SL
- 通讯作者:Heaver SL
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dominic Campopiano其他文献
Dominic Campopiano的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dominic Campopiano', 18)}}的其他基金
Discovery of a cryptic sphingolipid pathway in E.coli - structural and functional analysis.
大肠杆菌中神秘鞘脂途径的发现 - 结构和功能分析。
- 批准号:
BB/Y002210/1 - 财政年份:2024
- 资助金额:
$ 51.08万 - 项目类别:
Research Grant
Sphingolipids; key communicators from the microbial world.
鞘脂类;
- 批准号:
BB/X018490/1 - 财政年份:2023
- 资助金额:
$ 51.08万 - 项目类别:
Research Grant
2019BBSRC-NSF/BIO. SynBioSphinx: building designer lipid membranes for adaptive resilience to environmental challenges.
2019BBSRC-NSF/BIO。
- 批准号:
BB/T016841/1 - 财政年份:2020
- 资助金额:
$ 51.08万 - 项目类别:
Research Grant
Modulators of sphingolipid synthesis - new therapeutics for disease control.
鞘脂合成调节剂 - 疾病控制的新疗法。
- 批准号:
BB/T010126/1 - 财政年份:2019
- 资助金额:
$ 51.08万 - 项目类别:
Research Grant
Underpinning UK Biomolecular Research with Next-Generation High Resolution Mass Spectrometry at the University of Edinburgh
爱丁堡大学利用下一代高分辨率质谱支持英国生物分子研究
- 批准号:
BB/R013993/1 - 财政年份:2018
- 资助金额:
$ 51.08万 - 项目类别:
Research Grant
The human serine palmitoyltransferase (SPT) complex; specificity, structure, regulation and inhibition.
人丝氨酸棕榈酰转移酶(SPT)复合物;
- 批准号:
BB/M003493/1 - 财政年份:2015
- 资助金额:
$ 51.08万 - 项目类别:
Research Grant
Exploring, evolving and exploiting coupled racemase/acylase biotransformation systems.
探索、发展和利用耦合消旋酶/酰基酶生物转化系统。
- 批准号:
BB/K006487/1 - 财政年份:2013
- 资助金额:
$ 51.08万 - 项目类别:
Research Grant
Elucidation of the bacterial sphingolipid biosynthetic pathway in Sphingomonas wittichii.
阐明维氏鞘氨醇细菌鞘脂生物合成途径。
- 批准号:
BB/I013687/1 - 财政年份:2011
- 资助金额:
$ 51.08万 - 项目类别:
Research Grant
Sphingolipid biosynthesis in man and microbes
人和微生物中的鞘脂生物合成
- 批准号:
BB/G53045X/1 - 财政年份:2009
- 资助金额:
$ 51.08万 - 项目类别:
Research Grant
相似国自然基金
新型米诺环素蛋白纳米粒通过抑制鞘脂通路逆转念珠菌唑类耐药的机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
鞘脂类信号物质参与调控枸杞抗病性的作用机制
- 批准号:
- 批准年份:2019
- 资助金额:40 万元
- 项目类别:地区科学基金项目
弓形虫通过纳虫空泡膜募集宿主Rab14蛋白获取鞘脂类脂质用于胞内增殖的作用机制
- 批准号:81802037
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
二氢神经酰胺类鞘脂及其代谢通路在慢加急性肝衰竭发生发展中的作用及防治措施研究
- 批准号:81573487
- 批准年份:2015
- 资助金额:50.0 万元
- 项目类别:面上项目
病毒介导的海洋球石藻新型鞘脂类代谢调控机制及其诱导宿主细胞凋亡研究
- 批准号:41576166
- 批准年份:2015
- 资助金额:62.0 万元
- 项目类别:面上项目
相似海外基金
A multi-omic and integrative longitudinal evaluation of the role of lipid, antioxidant, and osmoprotectant metabolites in the genitourinary syndrome of menopause by race and ethnicity.
按种族和民族对脂质、抗氧化剂和渗透保护代谢物在更年期泌尿生殖综合征中的作用进行多组学和综合纵向评估。
- 批准号:
10643444 - 财政年份:2023
- 资助金额:
$ 51.08万 - 项目类别:
Glycosphingolipids from the Soil Microbiome, Understanding Structure and Biosynthesis
来自土壤微生物组的鞘糖脂,了解结构和生物合成
- 批准号:
10836832 - 财政年份:2023
- 资助金额:
$ 51.08万 - 项目类别:
Diversity Supplement - Progranulin, Prosaposin and Lipid Biology in FTD
多样性补充 - FTD 中的颗粒体蛋白前体、前塞波辛和脂质生物学
- 批准号:
10734455 - 财政年份:2023
- 资助金额:
$ 51.08万 - 项目类别:
Investigating the Function of Fimbriae-forming Lipoprotein in Porphyromonas gingivalis
牙龈卟啉单胞菌菌毛形成脂蛋白的功能研究
- 批准号:
10749647 - 财政年份:2023
- 资助金额:
$ 51.08万 - 项目类别:
Hyperfibrinogenemia and sphingolipid-mediated cerebrovascular permeability and memory impairment during TBI
TBI期间高纤维蛋白原血症和鞘脂介导的脑血管通透性和记忆障碍
- 批准号:
10855710 - 财政年份:2023
- 资助金额:
$ 51.08万 - 项目类别: