Assembly and evolution of a photosynthetic antenna
光合天线的组装和演化
基本信息
- 批准号:BB/W008076/1
- 负责人:
- 金额:$ 60.52万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Photosynthesis is the source of all the food we eat, and almost all of the energy we use. This process uses sunlight to remove carbon dioxide from the atmosphere and convert it into carbohydrates that feed the planet. Sunlight is captured by chlorophyll pigments that are arranged and held in place by proteins; these pigment-protein arrangements are known as antenna complexes. Antennas collect the light energy and funnel it towards specialised 'reaction centres', where the energy is converted to a form that can be used by the cell.Plants and cyanobacteria (blue-green algae) use chlorophyll (Chl) pigments to capture visible light (400-700 nm) to perform 'oxygenic' photosynthesis, releasing the oxygen that supports respiration. Additionally, a diverse assortment of bacteria are also capable of using light outside this range (>700 nm), which we cannot see but feel as heat, to perform 'anoxygenic' photosynthesis. This mode of photosynthesis relies on the bacteriochlorophyll (BChl) pigments, rather than Chls.The majority of anoxygenic photosynthesisers use BChl a to harvest light between 750-900 nm, although Rhodospirillum rubrum is a well-studied example that unusually cannot harvest light effectively up to 850 nm because it lacks the common antenna complex. This project aims to transfer the antenna of another photosynthetic bacterium to Rhodospirillum rubrum, to allow the new, hybrid organism to capture light it was not previously able to.Further modifications to the new bacterium will be made by targeted alterations to the genome, and mutations will also be naturally acquired by growing the organism under light that can only be absorbed by the new antenna complex, a process that mirrors natural evolution, but that can be speeded-up in the laboratory.Achieving these aims will reveal how to assemble and regulate the production of pigment-protein complexes in other simple bacteria, with the long-term goal of putting boosted light-capturing ability to use to tackle some of humanity's impending fuel and food supply challenges in a sustainable manner. This could also have a positive effect on climate change; increased removal of CO2 greenhouse gas, and its conversion into sugars, could slow the warming of the planet, and mitigate the damage to the environment.
光合作用是我们吃的所有食物的来源,也是我们使用的几乎所有能量的来源。这个过程利用阳光去除大气中的二氧化碳,并将其转化为碳水化合物,为地球提供食物。阳光被叶绿素色素捕获,叶绿素色素由蛋白质排列并固定在适当的位置;这些色素-蛋白质排列被称为天线复合物。天线收集光能并将其输送到专门的“反应中心”,在那里能量被转化为细胞可以使用的形式。植物和蓝藻(蓝绿藻)使用叶绿素 (Chl) 色素来捕获可见光(400-700 nm)进行“产氧”光合作用,释放支持呼吸的氧气。此外,多种细菌也能够利用此范围(>700 nm)之外的光(我们看不见但感觉为热)来进行“缺氧”光合作用。这种光合作用模式依赖于细菌叶绿素 (BChl) 色素,而不是 Chls。大多数无氧光合作用者使用 BChl a 来收集 750-900 nm 之间的光,尽管红色红螺菌是一个经过充分研究的例子,但它通常无法有效地收集光到 850 nm,因为它缺乏常见的天线复合体。该项目旨在将另一种光合细菌的触角转移到红色红螺菌上,使这种新的杂交生物能够捕获以前无法捕获的光。对新细菌的进一步修改将通过对基因组和突变进行有针对性的改变也可以通过在只能被新天线复合体吸收的光下培养生物体来自然获得,这一过程反映了自然进化,但可以在实验室中加速。实现这些目标将揭示如何组装和调节其他简单细菌中色素-蛋白质复合物的产生,其长期目标是利用增强的光捕获能力以可持续的方式应对人类即将面临的一些燃料和食品供应挑战。这也可能对气候变化产生积极影响;增加二氧化碳温室气体的去除并将其转化为糖,可以减缓地球变暖,并减轻对环境的破坏。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Common loss of far-red light photoacclimation in cyanobacteria from hot and cold deserts: a case study in the Chroococcidiopsidales.
- DOI:10.1038/s43705-023-00319-4
- 发表时间:2023-10-19
- 期刊:
- 影响因子:0
- 作者:Antonaru, Laura A;Selinger, Vera M;Jung, Patrick;Di Stefano, Giorgia;Sanderson, Nicholas D;Barker, Leanne;Wilson, Daniel J;Budel, Burkhard;Canniffe, Daniel P;Billi, Daniela;Nurnberg, Dennis J
- 通讯作者:Nurnberg, Dennis J
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Canniffe其他文献
Daniel Canniffe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Canniffe', 18)}}的其他基金
Tuning near-infrared photosynthesis
调节近红外光合作用
- 批准号:
BB/X015955/1 - 财政年份:2024
- 资助金额:
$ 60.52万 - 项目类别:
Research Grant
相似国自然基金
进化视角下黑色旅游游客的心理机制研究
- 批准号:72302157
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
冰期和海流驱动印太交汇区两种马尾藻多样性进化的模式与过程
- 批准号:32371697
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
胡杨叶性状适应荒漠化气候的遗传与进化机制
- 批准号:32371838
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
醇脱氢酶的人工辅酶偏好性进化及催化机制解析
- 批准号:22377040
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
代理模型融合与迁移的分布式数据驱动进化计算方法
- 批准号:62376097
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
Directed and adaptive evolution of photosynthetic systems
光合系统的定向和适应性进化
- 批准号:
MR/Y011635/1 - 财政年份:2024
- 资助金额:
$ 60.52万 - 项目类别:
Fellowship
Clarification of the molecular mechanism of photosynthetic water oxidation and oxygen evolution
阐明光合水氧化和析氧的分子机制
- 批准号:
23H02446 - 财政年份:2023
- 资助金额:
$ 60.52万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
The functional role of photosynthesis-related genes in non-photosynthetic symbionts of corals
光合作用相关基因在珊瑚非光合作用共生体中的功能作用
- 批准号:
22KF0361 - 财政年份:2023
- 资助金额:
$ 60.52万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Origin of photosynthetic oxygen evolution on ancient Earth
古代地球光合作用氧气演化的起源
- 批准号:
22K19270 - 财政年份:2022
- 资助金额:
$ 60.52万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Environmental diversity and genomics studies of algal groups important to understand the origin and evolution of photosynthetic eukaryotes
藻类的环境多样性和基因组学研究对于理解光合真核生物的起源和进化很重要
- 批准号:
RGPIN-2018-04025 - 财政年份:2022
- 资助金额:
$ 60.52万 - 项目类别:
Discovery Grants Program - Individual