Assembly and evolution of a photosynthetic antenna
光合天线的组装和演化
基本信息
- 批准号:BB/W008076/1
- 负责人:
- 金额:$ 60.52万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Photosynthesis is the source of all the food we eat, and almost all of the energy we use. This process uses sunlight to remove carbon dioxide from the atmosphere and convert it into carbohydrates that feed the planet. Sunlight is captured by chlorophyll pigments that are arranged and held in place by proteins; these pigment-protein arrangements are known as antenna complexes. Antennas collect the light energy and funnel it towards specialised 'reaction centres', where the energy is converted to a form that can be used by the cell.Plants and cyanobacteria (blue-green algae) use chlorophyll (Chl) pigments to capture visible light (400-700 nm) to perform 'oxygenic' photosynthesis, releasing the oxygen that supports respiration. Additionally, a diverse assortment of bacteria are also capable of using light outside this range (>700 nm), which we cannot see but feel as heat, to perform 'anoxygenic' photosynthesis. This mode of photosynthesis relies on the bacteriochlorophyll (BChl) pigments, rather than Chls.The majority of anoxygenic photosynthesisers use BChl a to harvest light between 750-900 nm, although Rhodospirillum rubrum is a well-studied example that unusually cannot harvest light effectively up to 850 nm because it lacks the common antenna complex. This project aims to transfer the antenna of another photosynthetic bacterium to Rhodospirillum rubrum, to allow the new, hybrid organism to capture light it was not previously able to.Further modifications to the new bacterium will be made by targeted alterations to the genome, and mutations will also be naturally acquired by growing the organism under light that can only be absorbed by the new antenna complex, a process that mirrors natural evolution, but that can be speeded-up in the laboratory.Achieving these aims will reveal how to assemble and regulate the production of pigment-protein complexes in other simple bacteria, with the long-term goal of putting boosted light-capturing ability to use to tackle some of humanity's impending fuel and food supply challenges in a sustainable manner. This could also have a positive effect on climate change; increased removal of CO2 greenhouse gas, and its conversion into sugars, could slow the warming of the planet, and mitigate the damage to the environment.
光合作用是我们吃的所有食物的来源,几乎是我们使用的所有能量。该过程使用阳光去除大气中的二氧化碳,并将其转化为喂养地球的碳水化合物。阳光是由蛋白质排列和固定在适当位置的叶绿素色素捕获的。这些颜料蛋白质排列称为天线复合物。 Antennas collect the light energy and funnel it towards specialised 'reaction centres', where the energy is converted to a form that can be used by the cell.Plants and cyanobacteria (blue-green algae) use chlorophyll (Chl) pigments to capture visible light (400-700 nm) to perform 'oxygenic' photosynthesis, releasing the oxygen that supports respiration.此外,各种细菌也能够在此范围以外的光线(> 700 nm)之外使用光,我们看不到这是热的,可以进行“无氧合”光合作用。这种光合作用模式取决于细菌氯酚(BCHL)的色素,而不是CHL。大多数无氧光合作用者都使用BCHL A在750-900 nm之间收获光,尽管Rohodospirillum Rubrum是一个很好的例子,这些例子是一个很好的示例,无法有效地收获光,因为它在850 nm上有效地倾向于850 nM,因为它不足以达到850 nm,因为这是一个普通的andna。该项目旨在将另一种光合细菌的天线转移到杜鹃花刺rubrum,以允许新的,混合的有机体捕获以前无法捕获它。对新细菌进行的修改将通过有针对性的变化对基因组进行靶向变化而进行,并且在基因组中只能通过将垂直的生物养成的生物来实现,从而使新的生物逐渐被新的生物所吸引,从而使新的生物具有新的生物,从而使新的生物具有新颖的类路,从而使新的生物具有繁多的类路,从而使生物的垂直狂热,从而使生物的生物属于新的物体,从而使生物的生物属于新的生物。这些目标可以揭示如何在其他简单细菌中组装和调节色素 - 蛋白质复合物的产生,其长期目标是将增强的光捕获能力放在以可持续的方式解决人类某些燃料燃料和食品供应挑战的能力。这也可能对气候变化产生积极影响;二氧化碳温室气体的去除量增加及其转化为糖,可能会减慢地球的变暖,并减轻对环境的破坏。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Common loss of far-red light photoacclimation in cyanobacteria from hot and cold deserts: a case study in the Chroococcidiopsidales.
- DOI:10.1038/s43705-023-00319-4
- 发表时间:2023-10-19
- 期刊:
- 影响因子:0
- 作者:Antonaru, Laura A;Selinger, Vera M;Jung, Patrick;Di Stefano, Giorgia;Sanderson, Nicholas D;Barker, Leanne;Wilson, Daniel J;Budel, Burkhard;Canniffe, Daniel P;Billi, Daniela;Nurnberg, Dennis J
- 通讯作者:Nurnberg, Dennis J
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Canniffe其他文献
Daniel Canniffe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Canniffe', 18)}}的其他基金
Tuning near-infrared photosynthesis
调节近红外光合作用
- 批准号:
BB/X015955/1 - 财政年份:2024
- 资助金额:
$ 60.52万 - 项目类别:
Research Grant
相似国自然基金
进化视角下黑色旅游游客的心理机制研究
- 批准号:72302157
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于天然序列库的天冬酰胺多肽连接酶计算进化及机理研究
- 批准号:32371324
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
赤霉素与B类MADS-box基因互作调控紫花地丁两型花进化发育机制研究
- 批准号:32360059
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
西瓜果实成熟与品质形成进化的转录调控分子机制
- 批准号:32330093
- 批准年份:2023
- 资助金额:221 万元
- 项目类别:重点项目
多环芳烃影响大肠杆菌抗生素耐药性进化的分子机制
- 批准号:32301424
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Directed and adaptive evolution of photosynthetic systems
光合系统的定向和适应性进化
- 批准号:
MR/Y011635/1 - 财政年份:2024
- 资助金额:
$ 60.52万 - 项目类别:
Fellowship
Clarification of the molecular mechanism of photosynthetic water oxidation and oxygen evolution
阐明光合水氧化和析氧的分子机制
- 批准号:
23H02446 - 财政年份:2023
- 资助金额:
$ 60.52万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
The functional role of photosynthesis-related genes in non-photosynthetic symbionts of corals
光合作用相关基因在珊瑚非光合作用共生体中的功能作用
- 批准号:
22KF0361 - 财政年份:2023
- 资助金额:
$ 60.52万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Origin of photosynthetic oxygen evolution on ancient Earth
古代地球光合作用氧气演化的起源
- 批准号:
22K19270 - 财政年份:2022
- 资助金额:
$ 60.52万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Environmental diversity and genomics studies of algal groups important to understand the origin and evolution of photosynthetic eukaryotes
藻类的环境多样性和基因组学研究对于理解光合真核生物的起源和进化很重要
- 批准号:
RGPIN-2018-04025 - 财政年份:2022
- 资助金额:
$ 60.52万 - 项目类别:
Discovery Grants Program - Individual