UK-China Agritech Challenge - Utilizing Earth Observation and UAV Technologies to Deliver Pest and Disease Products and Services to End Users in China
中英农业科技挑战赛——利用地球观测和无人机技术为中国最终用户提供病虫害产品和服务
基本信息
- 批准号:BB/S020977/1
- 负责人:
- 金额:$ 42.14万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
(KCL) This project aims to develop time-series tools for pest and disease monitoring, forecasting and management in China, providing service products at national and local levels to enhance pest and disease control of wheat rust and locusts in particular. It will also develop advanced UAV-based tools that provide more efficient spraying of control measures (biopesticides) to provide alleviation of these problems without causing chemical pollution. In this context, the King's team will be developing ways to downscale satellite-based maps of land surface temperature to scales more akin to those of the fields within which the crops grow, in order to aid the development of mathematical models that can be used to forecast and monitor the efficacy of the bio-control measures and the spread of wheat rust. They will develop UAV-based methods to deliver maps of crop parameters from aerial imagery, which will be used to help both development of the downscaled satellite datasets and to provide an understanding of the crop structures that can be used to help in the development of the spraying technologies and planning tools that will be developed for the aerial platforms. Finally they will also develop methods to remotely sense locust surface temperatures from thermal imaging, in order to contribute to the development of better models of locust internal body temperature upon which the final mathematical models of bio-pesticide development rate depends.(Loughborough) Our proposal aims to develop a long term sustainable innovative partnership in agriculture technology between the UK and China through a comprehensive approach to deal with these two major agricultural pests/diseases. It will do so from a monitoring,forecasting and management perspective, combining cutting edge technology, modelling and biological information.The project is structured under six work packages that follow the cycle of a dynamic Agri-Tech service: observe to understand the nature of the problem and locate the pest/crop problem (WP1), orientate through development of forecast models to provide strategic risk awareness (WP2), decide providing useful information where to control pests at national and local levels (WP3), and act locally using precise application of bio pesticides via UAV deployments (WP4). The scopeof the project primarily falls into Agri-Tech Challenge 1 "Precision agriculture, agriculture digitisation and decision management tools" but also makes significant contributions to Challenge 2 "Improving the efficiency of sustainable agriculture". A key theme is to develop technologies for integrating data collected by UAVs, earth observation satellites,and bioscience applications related to disease/pest modelling. The project will develop autonomous and smart planning tools for agricultural remote sensing and plant protection, ultimately for the benefit of end users to reduce the cost and improve the effectiveness of their operations. One of the key outcomes is the development and application of novel technical systems for the monitoring and prediction of crop disease/pest outbreaks, As a novel technology, biopesticides treatment of orthoptera will be investigated and demonstrated, along with the modelling and prediction of yellow rust and orthoptera, real-time remote sensing methods will facilitate time specific and site specific treatment along with improved general farming management. Combining this with the work on biopesticides will significantly reduce the use of chemical pesticides and the risk of the development of crop's resistance to them, and will increase biodiversity due to lack of chemical pesticides. In addition to these benefits, the project will open up new business opportunities for both the UK, and Chinese industrial partners outside of China.
(KCL)该项目旨在开发中国病虫害监测、预报和管理的时间序列工具,为国家和地方各级提供服务产品,以加强对小麦锈病和蝗虫的病虫害防治。它还将开发先进的基于无人机的工具,提供更有效的喷洒控制措施(生物农药),从而在不造成化学污染的情况下缓解这些问题。在这种背景下,国王的团队将开发方法,将基于卫星的地表温度地图缩小到更接近农作物生长田地的比例,以帮助开发可用于预测和监测生物防治措施的效果和小麦锈病的传播。他们将开发基于无人机的方法,从航空图像中提供作物参数地图,这将用于帮助开发缩小比例的卫星数据集,并提供对作物结构的了解,从而帮助开发将为空中平台开发的喷涂技术和规划工具。最后,他们还将开发通过热成像遥感蝗虫表面温度的方法,以有助于开发更好的蝗虫内部体温模型,生物农药开发速度的最终数学模型取决于该模型。(拉夫堡)我们的建议旨在通过综合方法应对这两种主要农业病虫害,在英国和中国之间建立长期可持续的农业技术创新伙伴关系。它将从监测、预测和管理的角度出发,结合尖端技术、建模和生物信息。该项目由六个工作包组成,遵循动态农业技术服务的周期:观察以了解农业技术的本质问题并定位害虫/作物问题(WP1),通过开发预测模型来提供战略风险意识(WP2),决定提供有用的信息,在国家和地方层面控制害虫(WP3),并在当地采取精确应用行动通过无人机生产生物农药部署(WP4)。该项目的范围主要属于农业技术挑战1“精准农业、农业数字化和决策管理工具”,同时也为挑战2“提高可持续农业效率”做出了重大贡献。一个关键主题是开发整合无人机、地球观测卫星和与疾病/害虫建模相关的生物科学应用收集的数据的技术。该项目将为农业遥感和植物保护开发自主智能规划工具,最终使最终用户受益,降低成本并提高运营效率。关键成果之一是开发和应用用于监测和预测作物病虫害爆发的新技术系统,作为一项新技术,将研究和示范直翅目生物农药处理以及黄锈病的建模和预测对于直翅目和直翅目,实时遥感方法将促进特定时间和特定地点的处理以及改善一般农业管理。将此与生物农药工作相结合将显着减少化学农药的使用和作物产生抗药性的风险,并将因缺乏化学农药而增加生物多样性。除了这些好处外,该项目还将为英国和中国境外的工业合作伙伴开辟新的商机。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Experimental evaluation of UAV spraying for peach trees of different shapes: Effects of operational parameters on droplet distribution
无人机喷洒不同形状桃树的实验评价:操作参数对雾滴分布的影响
- DOI:10.1016/j.compag.2020.105282
- 发表时间:2020-03-01
- 期刊:
- 影响因子:0
- 作者:Yanhua Meng;Jinya Su;Jianli Song;Wen‐Hua Chen;Y. Lan
- 通讯作者:Y. Lan
Spraying Coverage Path Planning for Agriculture Unmanned Aerial Vehicles
农业无人机喷洒覆盖路径规划
- DOI:http://dx.10.23919/icac50006.2021.9594271
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Guo Y
- 通讯作者:Guo Y
The influence of rotor downwash on spray distribution under a quadrotor unmanned aerial system
四旋翼无人机旋翼下洗流对喷雾分布的影响
- DOI:10.1016/j.compag.2022.106807
- 发表时间:2022-05-01
- 期刊:
- 影响因子:0
- 作者:M. Coombes;Sam Newton;James Knowles;A. Garmory
- 通讯作者:A. Garmory
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Martin Wooster其他文献
Martin Wooster的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Martin Wooster', 18)}}的其他基金
NERC Field Spectroscopy Facility (FSF)
NERC 现场光谱设施 (FSF)
- 批准号:
NE/Y005392/1 - 财政年份:2024
- 资助金额:
$ 42.14万 - 项目类别:
Research Grant
NERC Earth Observation Data Analysis and Artificial-Intelligence Service (NEODAAS)
NERC 地球观测数据分析和人工智能服务 (NEODAAS)
- 批准号:
NE/Y005406/1 - 财政年份:2024
- 资助金额:
$ 42.14万 - 项目类别:
Research Grant
Development and application of Earth Observation to support reductions in methane emission from agriculture (EOforCH4)
地球观测的开发和应用以支持减少农业甲烷排放(EOforCH4)
- 批准号:
ST/Y000420/1 - 财政年份:2023
- 资助金额:
$ 42.14万 - 项目类别:
Research Grant
EO4AgroClimate: How agri-tech and space-based solutions can support climate smart agriculture in Australia
EO4AgroClimate:农业技术和天基解决方案如何支持澳大利亚的气候智能农业
- 批准号:
ST/W007088/1 - 财政年份:2021
- 资助金额:
$ 42.14万 - 项目类别:
Research Grant
Pollution and Climate Smart Agriculture in China (PaCSAC)
中国污染与气候智能型农业 (PaCSAC)
- 批准号:
ST/V002651/1 - 财政年份:2020
- 资助金额:
$ 42.14万 - 项目类别:
Research Grant
Field Spectroscopy Facility (FSF)
现场光谱设备 (FSF)
- 批准号:
NE/S013385/1 - 财政年份:2019
- 资助金额:
$ 42.14万 - 项目类别:
Research Grant
NERC Earth Observation Data Acquisition and Analysis Service (NEODAAS)
NERC 地球观测数据采集和分析服务 (NEODAAS)
- 批准号:
NE/S013377/1 - 财政年份:2019
- 资助金额:
$ 42.14万 - 项目类别:
Research Grant
GeoStationary Fire data for Developing Countries
发展中国家的地球静止火灾数据
- 批准号:
NE/S014004/1 - 财政年份:2019
- 资助金额:
$ 42.14万 - 项目类别:
Research Grant
New satellite observations to improve monitoring and forecasting of severe smoke pollution over SE Asia caused by Indonesian landscape burning
新的卫星观测可改善对印度尼西亚景观燃烧造成的东南亚严重烟雾污染的监测和预报
- 批准号:
ST/S003029/1 - 财政年份:2019
- 资助金额:
$ 42.14万 - 项目类别:
Research Grant
KEY IN SITU MEASURES OF EL NINO EXACERBATED FIRES IN INDONESIA
针对厄尔尼诺现象加剧印度尼西亚火灾的关键现场措施
- 批准号:
NE/N01555X/1 - 财政年份:2016
- 资助金额:
$ 42.14万 - 项目类别:
Research Grant
相似国自然基金
中国蝼蛄科昆虫整合分类学研究
- 批准号:32300375
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
中国月牙藻科植物的分类及系统发育研究
- 批准号:32370219
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于中国沿海GNSS研究大气折射率各向异性及其对测高的影响
- 批准号:42304035
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
跨代传承背景下中国家族企业创新战略的最优区分研究
- 批准号:72372094
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
人工智能技术加剧全球价值链非平衡发展的形成机理与中国对策研究
- 批准号:72303127
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
UK-China Agritech Challenge Zero-Waste Agricultural Mulch Films for Crops in China (ZEWAMFI)
中英农业科技挑战赛中国农作物零废弃农用地膜 (ZEWAMFI)
- 批准号:
BB/S020861/1 - 财政年份:2019
- 资助金额:
$ 42.14万 - 项目类别:
Research Grant
UK-China Agritech Challenge: Aquaculture 4.0 -- Advancing Digital Precision Aquaculture in China (ADPAC)
中英农业科技挑战赛:水产养殖 4.0——推进中国数字化精准水产养殖 (ADPAC)
- 批准号:
BB/S020896/1 - 财政年份:2019
- 资助金额:
$ 42.14万 - 项目类别:
Research Grant
UK-China Agritech Challenge: Envirobot An autonomous roving platform for environment, health and welfare monitoring of poultry
中英农业科技挑战赛:Envirobot 用于家禽环境、健康和福利监测的自主流动平台
- 批准号:
BB/S020829/1 - 财政年份:2019
- 资助金额:
$ 42.14万 - 项目类别:
Research Grant
UK-China Agritech Challenge: CropDoc - Precision Crop Disease Management for Farm Productivity and Food Security
中英农业科技挑战赛:CropDoc - 精准作物病害管理,提高农业生产力和粮食安全
- 批准号:
BB/S020969/1 - 财政年份:2019
- 资助金额:
$ 42.14万 - 项目类别:
Research Grant
UK-China Agritech Challenge: Environmentally Benign Combination Biopesticides - Transforming Pest Control in Chinese and UK Agriculture
中英农业科技挑战赛:环境友好的组合生物农药——改变中国和英国农业的害虫防治
- 批准号:
BB/S02087X/1 - 财政年份:2019
- 资助金额:
$ 42.14万 - 项目类别:
Research Grant