Establishing the genetic basis of symbiosis in an insect host
建立昆虫宿主共生的遗传基础
基本信息
- 批准号:BB/S017534/1
- 负责人:
- 金额:$ 77.1万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
An animal body is habitat for billions of bacteria, which live in the gut and on the skin. These bacteria were long regard as passengers we called commensals - using the animal as a host, but not strongly affecting the biology of the animal. In contrast, we now recognise that these microbes are an important and active component of the individual - how an organism develops, its immunity and resistance to infection all misbehave when the microbiome is absent or depleted. In insects, symbiosis ('living together') is commonly even better established - microbial partners exist within the body of the insect, not just within the gut and upon skin surfaces. Further, they may be heritable- transmitted from a female to her progeny. These microbial partners define very important properties of the insect -the ability to utilize a plant as a pest; whether the insect can transmit pathogens onward to plants and animals; whether the individual is susceptible to viral/parasitic infection. These properties are exploitable - in Cairns, Australia, mosquitoes carrying a symbiotic microbe that prevents the transmission of dengue are released en masse to protect the residents from infection by dengue. We currently know little about how these symbionts work. One observation is that they commonly have degraded genomes - which predicts increased reliance on the genes remaining. In addition, the microbes have to deploy an array of genes to establish persistent symbiosis - a long life within the host. The first part of this project will examine how much of the genome is required for these functions. We will also ask if symbiosis is a 'redeployment' of pathogen systems, or whether novel mechanisms are involved. Beyond this, we will establish how symbiosis genes enable the microbe to complete their life cycle, and how they modify the biology of their host - in our case, showing male-limited pathogenesis (male-killing).The reason we have not been able to answer this question before is simple: adaptation to life within a host makes these bacteria very hard to study outside of the host. In this project, we will exploit a symbiosis where the microbe can be grown in culture, where we can alter the genetic constitution of the microbe and can re-introduce strains easily to the insect. We will use this system to test which aspects of the microbe's genome determine its ability to be symbiotic. We have created 10,000 strains of the bacterium Arsenophonus nasoniae, each with a different gene 'knocked out'. We will reintroduce these into the host insect (the tiny parasitic jewel wasp). We are interested in the strains that fail to establish a symbiosis - these will be ones where the gene in question is necessary for the bacteria to live in symbiosis. We will then explore how these genes aid in establishing a symbiotic life style. Further to this, we will identify the genes responsible for male-killing.In completing this analysis, we will achieve the first examination of the genes and systems that microbes require to live within an insect and modify its biology. In addition to the intrinsic scientific interest of the research, our findings will allow us to better exploit symbionts to improve human health and food supply. Our focal microbe is closely related to insect vectored plant pathogens that damage fruit plants, and other bacteria that are associated with poor honeybee health. More generally, the knowledge gained will allow us to better engineer novel host-symbiont combinations for pest and vector control, with the aim of improving agricultural yields and human health.
动物体内是数十亿细菌的栖息地,这些细菌生活在肠道和皮肤上。这些细菌长期以来被视为乘客,我们称之为共生体——以动物为宿主,但不会强烈影响动物的生物学。相比之下,我们现在认识到这些微生物是个体的重要且活跃的组成部分——当微生物组缺失或耗尽时,有机体如何发育、其免疫力和对感染的抵抗力都会出现问题。在昆虫中,共生(“共同生活”)通常更容易建立——微生物伙伴存在于昆虫体内,而不仅仅是肠道内和皮肤表面。此外,它们可能是可遗传的——从女性传给她的后代。这些微生物伙伴定义了昆虫非常重要的特性——利用植物作为害虫的能力;昆虫是否可以将病原体传播给植物和动物;个体是否易受病毒/寄生虫感染。这些特性是可以利用的——在澳大利亚凯恩斯,携带阻止登革热传播的共生微生物的蚊子被大规模释放,以保护居民免受登革热感染。目前我们对这些共生体如何运作知之甚少。一项观察结果是,它们的基因组普遍退化——这预示着它们对剩余基因的依赖会增加。此外,微生物必须部署一系列基因来建立持久的共生关系——在宿主体内延长寿命。该项目的第一部分将检查这些功能需要多少基因组。我们还将询问共生是否是病原体系统的“重新部署”,或者是否涉及新的机制。除此之外,我们将确定共生基因如何使微生物完成其生命周期,以及它们如何改变宿主的生物学——在我们的例子中,显示出雄性限制的发病机制(雄性致死)。我们无法做到这一点的原因之前回答这个问题很简单:对宿主体内生活的适应使得这些细菌很难在宿主之外进行研究。在这个项目中,我们将利用一种共生关系,使微生物可以在培养物中生长,我们可以改变微生物的遗传构成,并可以轻松地将菌株重新引入昆虫。我们将使用这个系统来测试微生物基因组的哪些方面决定其共生能力。我们已经培育出了 10,000 种纳索尼亚砷细菌菌株,每种菌株都有一个不同的基因被“敲除”。我们将把它们重新引入宿主昆虫(微小的寄生宝石黄蜂)中。我们对未能建立共生的菌株感兴趣——这些菌株中的基因对于细菌的共生生存是必需的。然后我们将探索这些基因如何帮助建立共生生活方式。除此之外,我们将确定导致雄性死亡的基因。在完成这项分析时,我们将首次检查微生物在昆虫体内生存并改变其生物学所需的基因和系统。除了研究的内在科学意义外,我们的研究结果将使我们能够更好地利用共生体来改善人类健康和粮食供应。我们的焦点微生物与损害果树的昆虫传播的植物病原体以及与蜜蜂健康状况不佳相关的其他细菌密切相关。更一般地说,所获得的知识将使我们能够更好地设计用于害虫和病媒控制的新型宿主共生组合,以提高农业产量和人类健康。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Arsenophonus apicola sp. nov., isolated from the honeybee Apis mellifera.
Arsenophonus apicola sp.
- DOI:http://dx.10.1099/ijsem.0.005469
- 发表时间:2022
- 期刊:
- 影响因子:2.8
- 作者:Nadal
- 通讯作者:Nadal
Transitions in symbiosis: evidence for environmental acquisition and social transmission within a clade of heritable symbionts.
共生转变:可遗传共生体进化枝内环境获取和社会传播的证据。
- DOI:http://dx.10.1038/s41396-021-00977-z
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Drew GC
- 通讯作者:Drew GC
Symbiopectobacterium purcellii, gen. nov., sp. nov., isolated from the leafhopper Empoasca decipiens.
普氏共生菌,gen.
- DOI:http://dx.10.1099/ijsem.0.005440
- 发表时间:2022
- 期刊:
- 影响因子:2.8
- 作者:Nadal
- 通讯作者:Nadal
The son-killer microbe Arsenophonus nasoniae is a widespread associate of the parasitic wasp Nasonia vitripennis in Europe.
在欧洲,杀子微生物 Arsenophonus nasoniae 是寄生黄蜂 Nasonia vitripennis 的常见伙伴。
- DOI:http://dx.10.1016/j.jip.2023.107947
- 发表时间:2023
- 期刊:
- 影响因子:3.4
- 作者:Nadal
- 通讯作者:Nadal
The Hypercomplex Genome of an Insect Reproductive Parasite Highlights the Importance of Lateral Gene Transfer in Symbiont Biology.
昆虫生殖寄生虫的超复杂基因组凸显了横向基因转移在共生生物学中的重要性。
- DOI:http://dx.10.1128/mbio.02590-19
- 发表时间:2020
- 期刊:
- 影响因子:6.4
- 作者:Frost CL
- 通讯作者:Frost CL
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gregory Hurst其他文献
Gregory Hurst的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gregory Hurst', 18)}}的其他基金
Symbionts or genes? Integrating the evolutionary response to parasites across varying modalities of resistance.
共生体还是基因?
- 批准号:
NE/V011979/1 - 财政年份:2021
- 资助金额:
$ 77.1万 - 项目类别:
Research Grant
Does Spiroplasma protect against trypanosome infection in Drosophila?
螺原体是否能保护果蝇免受锥虫感染?
- 批准号:
NE/V009834/1 - 财政年份:2021
- 资助金额:
$ 77.1万 - 项目类别:
Research Grant
Genetics and evolutionary dynamics of male-killer suppression in the lacewing, Mallada desjardinsi
草蛉雄性杀手抑制的遗传学和进化动力学,Mallada desjardinsi
- 批准号:
NE/S012346/1 - 财政年份:2019
- 资助金额:
$ 77.1万 - 项目类别:
Research Grant
Evaluating the safety and nutritional quality of a novel insect based food product in Benin
评估贝宁新型昆虫食品的安全性和营养品质
- 批准号:
BB/P022545/1 - 财政年份:2017
- 资助金额:
$ 77.1万 - 项目类别:
Research Grant
How do sex ratio distorting symbionts affect the evolution of their host?
性别比例扭曲的共生体如何影响宿主的进化?
- 批准号:
NE/N010434/1 - 财政年份:2016
- 资助金额:
$ 77.1万 - 项目类别:
Research Grant
Beyond the Red Queen: are elevated parasite evolutionary rates driven by host shifts?
除了红皇后之外:寄生虫进化率的升高是由宿主变化驱动的吗?
- 批准号:
NE/I01067X/1 - 财政年份:2011
- 资助金额:
$ 77.1万 - 项目类别:
Research Grant
Temperature impacts on parasite epidemiology - case study of a contact-transmitted insect parasite
温度对寄生虫流行病学的影响——接触传播昆虫寄生虫的案例研究
- 批准号:
NE/G003246/1 - 财政年份:2009
- 资助金额:
$ 77.1万 - 项目类别:
Research Grant
Comparative genomics of Arsenophonus, a bacterial symbiont of arthropods
节肢动物细菌共生体 Arsenophonus 的比较基因组学
- 批准号:
NE/F010974/1 - 财政年份:2008
- 资助金额:
$ 77.1万 - 项目类别:
Research Grant
Selfish genetic elements and population viability: the impact of temperature and sexual selection
自私的遗传因素和种群生存能力:温度和性选择的影响
- 批准号:
NE/F005245/1 - 财政年份:2008
- 资助金额:
$ 77.1万 - 项目类别:
Research Grant
相似国自然基金
基于图形基因组解析新疆甜瓜果实发育的分子遗传基础
- 批准号:32360749
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
人隐孢子虫新发亚型跨种传播的遗传基础
- 批准号:32302895
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
A03和A08染色体上多基因介导的油菜根肿病免疫抗性形成的遗传基础
- 批准号:32372171
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
粟米草属C3-C2-C4演化的遗传基础解析
- 批准号:32370257
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
温度和光周期对植物开花时间的影响及其遗传基础研究
- 批准号:32371582
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Establishing the development basis for the morphological and functional asymmetry of the human chorion
建立人类绒毛膜形态和功能不对称的发育基础
- 批准号:
10673397 - 财政年份:2023
- 资助金额:
$ 77.1万 - 项目类别:
Establishing a mechanistic basis for enhanced tumorigenesis under chronic circadian disruption
建立慢性昼夜节律紊乱下增强肿瘤发生的机制基础
- 批准号:
10608913 - 财政年份:2022
- 资助金额:
$ 77.1万 - 项目类别:
Establishing a mechanistic basis for the plasmid acquisition cost
建立质粒获取成本的机制基础
- 批准号:
10291392 - 财政年份:2021
- 资助金额:
$ 77.1万 - 项目类别:
Understanding Selectivity Mechanisms of Network Vulnerability and Resilience in Alzheimer's Disease by Establishing a Neurobiological Basis through Network Neuroscience
通过网络神经科学建立神经生物学基础,了解阿尔茨海默氏病网络脆弱性和恢复力的选择性机制
- 批准号:
10033069 - 财政年份:2020
- 资助金额:
$ 77.1万 - 项目类别:
Establishing the Genetic Basis of Altered Drug Responses in Mycobacterium tuberculosis
建立结核分枝杆菌药物反应改变的遗传基础
- 批准号:
10390301 - 财政年份:2019
- 资助金额:
$ 77.1万 - 项目类别: