Accelerating and enhancing the PSIPRED Workbench with deep learning

通过深度学习加速和增强 PSIPRED Workbench

基本信息

  • 批准号:
    BB/T019409/1
  • 负责人:
  • 金额:
    $ 77.79万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

With the growing number of completely sequenced genomes, life scientists now face the challenge of characterizing the biological role of the encoded proteins as to advance our understanding of cell physiology. Most genes are designed to code for proteins which have useful functions in an organism. Proteins are essentially strings of simpler molecules, called amino acids and these strings can self-assemble into a complex 3-D structure as soon as the protein is formed by the protein-making machinery (ribosomes) in the cell. It is this unique structure which determines the precise chemical function of the protein (i.e. what is does in the cell and how it does it). By firing X-rays at crystallised proteins, scientists can determine their structure, but this process can take many months or even years. With hundreds of thousands of proteins for which the native structure is unknown, it is not surprising that scientists want to find a clever shortcut to working out the structure of proteins. We, like many other scientists have been trying to "crack the code" of protein structure i.e. working out the rules which govern how the protein finds its unique structure and then trying to program a computer with these rules to allow scientists to quickly "predict" what the structure of their protein of interest might be.The PSIPRED Workbench is a collection of Web servers maintained at UCL which does just this i.e. it allows biologists to predict the structure of their protein structure given just its amino acid sequence. Over the years it has helped many thousands of scientists with their work by providing these services and we now wish not only to upgrade and maintain these existing servers but also to implement new methods which allow the structures of even the most difficult proteins to be deduced by computer simulations.More recently, however, PSIPRED has been given a wider range of features to cover other important problems in biology. For example, using PSIPRED, a scientist can predict which proteins do not fold into stable shapes (called disordered proteins) or which chemical substances are likely to bind to a protein. Even where a protein does not appear to fold into a single stable structure, PSIPRED can still help scientists deduce what the function of his or her protein is likely to be. Generating such information on a large scale using computer algorithms can help expand our knowledge base of the biological role of proteins at a cellular level, and such understanding will be a key stepping stone in the development of techniques and pharmaceuticals to target diseased genes and their products as well as proteins from pathological organisms such as bacteria or viruses. In a similar way, knowledge on the function of certain bacterial genes can, for example, help develop new industrial processes by modifying the genes to make them produce novel chemical compounds, or even helping to detoxify industrial waste by producing friendly bacteria that can use the poisonous chemicals as food.
随着完全测序的基因组的数量,生命科学家现在面临着表征编码蛋白的生物学作用的挑战,以提高我们对细胞生理的理解。大多数基因旨在编码在生物体中具有有用功能的蛋白质。蛋白质本质上是较简单的分子字符串,称为氨基酸,一旦细胞中的蛋白质制造机械(核糖体)形成蛋白质,这些细胞就可以自组装成复杂的3-D结构。正是这种独特的结构决定了蛋白质的精确化学功能(即细胞中的作用以及它的作用)。通过向结晶蛋白发射X射线,科学家可以确定其结构,但是此过程可能需要数月甚至几年。由于本机结构未知的数十万蛋白质,科学家想找到一个聪明的捷径来制定蛋白质的结构也就不足为奇了。像许多其他科学家一样,我们一直在试图“破解蛋白质结构的代码”,即制定控制蛋白质如何找到其独特结构的规则,然后试图与这些规则进行编程,以允许科学家快速预测“他们感兴趣的蛋白质结构可能是什么可能是什么。PSIPREDWORKER可能是在UCL上维护的蛋白质的构建良好的概念。多年来,它通过提供这些服务来帮助成千上万的科学家进行工作,现在我们不仅希望升级和维护这些现有的服务器,而且还希望实施新方法,这些方法甚至可以通过计算机模拟来推导最困难的蛋白质的结构。例如,使用PSIPRED,科学家可以预测哪些蛋白质不会折叠成稳定的形状(称为无序蛋白)或哪些化学物质可能与蛋白质结合。即使蛋白质似乎没有折叠成单个稳定的结构,PSIPRED仍然可以帮助科学家推断其蛋白质的功能可能是什么。使用计算机算法在大规模上生成此类信息可以帮助扩大我们在细胞水平上蛋白质生物学作用的知识基础,而这种理解将是技术和药品开发的关键垫脚石,以靶向患病基因及其产物以及来自病毒或病毒植物等病理生物的蛋白质。以类似的方式,关于某些细菌基因功能的知识可以通过修饰基因来使它们产生新型化学化合物,甚至通过产生可以使用有毒化学物质作为食物的友好型细菌来帮助对工业废物进行排毒的知识。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Machine learning methods for predicting protein structure from single sequences.
  • DOI:
    10.1016/j.sbi.2023.102627
  • 发表时间:
    2023-06
  • 期刊:
  • 影响因子:
    6.8
  • 作者:
    S. M. Kandathil;Andy M. Lau;David T. Jones
  • 通讯作者:
    S. M. Kandathil;Andy M. Lau;David T. Jones
Large-scale clustering of AlphaFold2 3D models shines light on the structure and function of proteins
  • DOI:
    10.1016/j.molcel.2023.10.039
  • 发表时间:
    2023-11-16
  • 期刊:
  • 影响因子:
    16
  • 作者:
    Bordin,Nicola;Lau,Andy M.;Orengo,Christine
  • 通讯作者:
    Orengo,Christine
Merizo: a rapid and accurate domain segmentation method using invariant point attention
Merizo:一种使用不变点注意力的快速准确的域分割方法
  • DOI:
    10.1101/2023.02.19.529114
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lau A
  • 通讯作者:
    Lau A
Merizo: a rapid and accurate protein domain segmentation method using invariant point attention.
  • DOI:
    10.1038/s41467-023-43934-4
  • 发表时间:
    2023-12-19
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Lau, Andy M.;Kandathil, Shaun M.;Jones, David T.
  • 通讯作者:
    Jones, David T.
共 4 条
  • 1
前往

David Jones其他文献

Use of Computers in Assessment: A Potential Solution to the Documentation Dilemma of the Activities Coordinator
在评估中使用计算机:活动协调员文档困境的潜在解决方案
  • DOI:
  • 发表时间:
    1986
    1986
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Halberg;Lisa E. Duncan;N. Z. Mitchell;F. Hendrick;David Jones
    K. Halberg;Lisa E. Duncan;N. Z. Mitchell;F. Hendrick;David Jones
  • 通讯作者:
    David Jones
    David Jones
Central Stars of Planetary Nebulae
行星状星云的中心恒星
Air Toxics Under The Big Sky – A High School Science Teaching Tool
广阔天空下的空气毒物——高中科学教学工具
  • DOI:
  • 发表时间:
    2007
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Jones;T. Ward;D. Vanek;Nancy Marra;C. Noonan;Garon C. Smith;Earle Adams
    David Jones;T. Ward;D. Vanek;Nancy Marra;C. Noonan;Garon C. Smith;Earle Adams
  • 通讯作者:
    Earle Adams
    Earle Adams
Climate change and the prescription pad
气候变化和处方簿
  • DOI:
  • 发表时间:
    2022
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Richie;A. Kesselheim;David Jones
    C. Richie;A. Kesselheim;David Jones
  • 通讯作者:
    David Jones
    David Jones
An experimental study into the effects of positive subliminal priming and its effect on peoples levels of happiness
积极潜意识启动效应及其对人们幸福水平影响的实验研究
  • DOI:
  • 发表时间:
    2013
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Jones
    David Jones
  • 通讯作者:
    David Jones
    David Jones
共 226 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 46
前往

David Jones的其他基金

Open Access Block Award 2024 - The Francis Crick Institute
2024 年开放获取区块奖 - 弗朗西斯·克里克研究所
  • 批准号:
    EP/Z531844/1
    EP/Z531844/1
  • 财政年份:
    2024
  • 资助金额:
    $ 77.79万
    $ 77.79万
  • 项目类别:
    Research Grant
    Research Grant
Open Access Block Award 2023 - The Francis Crick Institute
2023 年开放获取区块奖 - 弗朗西斯·克里克研究所
  • 批准号:
    EP/Y530360/1
    EP/Y530360/1
  • 财政年份:
    2023
  • 资助金额:
    $ 77.79万
    $ 77.79万
  • 项目类别:
    Research Grant
    Research Grant
Open Access Block Award 2022 - The Francis Crick Institute
2022 年开放获取区块奖 - 弗朗西斯·克里克研究所
  • 批准号:
    EP/X526381/1
    EP/X526381/1
  • 财政年份:
    2022
  • 资助金额:
    $ 77.79万
    $ 77.79万
  • 项目类别:
    Research Grant
    Research Grant
Exploiting Differentiable Programming Models For Protein Structure Prediction And Modelling
利用可微分编程模型进行蛋白质结构预测和建模
  • 批准号:
    BB/W008556/1
    BB/W008556/1
  • 财政年份:
    2022
  • 资助金额:
    $ 77.79万
    $ 77.79万
  • 项目类别:
    Research Grant
    Research Grant
Statewide effort to diversify undergraduate engineering student population.
全州范围内努力使本科工程学生群体多样化。
  • 批准号:
    1848696
    1848696
  • 财政年份:
    2018
  • 资助金额:
    $ 77.79万
    $ 77.79万
  • 项目类别:
    Standard Grant
    Standard Grant
Cross Disciplinary Thinking about 'Antisocial Personality Disorder'.
关于“反社会人格障碍”的跨学科思考。
  • 批准号:
    ES/L000911/2
    ES/L000911/2
  • 财政年份:
    2017
  • 资助金额:
    $ 77.79万
    $ 77.79万
  • 项目类别:
    Research Grant
    Research Grant
ANAMMARKS: ANaerobic AMmonium oxidiation bioMARKers in paleoenvironmentS
ANAMMARKS:古环境中的厌氧铵氧化生物标志物
  • 批准号:
    NE/N011112/1
    NE/N011112/1
  • 财政年份:
    2016
  • 资助金额:
    $ 77.79万
    $ 77.79万
  • 项目类别:
    Research Grant
    Research Grant
Newcastle University Confidence in Concept 2014
纽卡斯尔大学 2014 年理念信心
  • 批准号:
    MC_PC_14101
    MC_PC_14101
  • 财政年份:
    2015
  • 资助金额:
    $ 77.79万
    $ 77.79万
  • 项目类别:
    Intramural
    Intramural
Expansion and Further Development of the PSIPRED Protein Structure and Function Bioinformatics Workbench
PSIPRED 蛋白质结构和功能生物信息学工作台的扩展和进一步发展
  • 批准号:
    BB/M011712/1
    BB/M011712/1
  • 财政年份:
    2015
  • 资助金额:
    $ 77.79万
    $ 77.79万
  • 项目类别:
    Research Grant
    Research Grant
Large area two dimensional mapping of carbon dioxide fluxes for assessment and control of carbon capture and storage project
大面积二维二氧化碳通量测绘,用于碳捕获和封存项目的评估和控制
  • 批准号:
    ST/L00626X/1
    ST/L00626X/1
  • 财政年份:
    2014
  • 资助金额:
    $ 77.79万
    $ 77.79万
  • 项目类别:
    Research Grant
    Research Grant

相似国自然基金

空芯光纤增强拉曼分布式氢气传感技术研究
  • 批准号:
    62305232
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
硫化氢合成酶DCD和LCD的S-亚硝基化修饰增强番茄幼苗的耐镉性
  • 批准号:
    32360743
  • 批准年份:
    2023
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
可代谢调控弱碱性钠盐纳米材料的控制合成及其在增强癌症免疫治疗中的应用
  • 批准号:
    52372273
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
纳米基质增强小型质谱拉曼联用仪及其对复杂组分毒品的现场检测
  • 批准号:
    22374164
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
表面等离激元增强的深紫外透明导电复合薄膜的光电性能调控及器件应用
  • 批准号:
    62364014
  • 批准年份:
    2023
  • 资助金额:
    35 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

I-Corps: Translation Potential of Cellulose-Nanofiber-Based Surface Agents for Enhancing Bioactive Filtration Efficiency
I-Corps:纤维素纳米纤维基表面剂在提高生物活性过滤效率方面的转化潜力
  • 批准号:
    2401619
    2401619
  • 财政年份:
    2024
  • 资助金额:
    $ 77.79万
    $ 77.79万
  • 项目类别:
    Standard Grant
    Standard Grant
Collaborative Research: HNDS-I: NewsScribe - Extending and Enhancing the Media Cloud Searchable Global Online News Archive
合作研究:HNDS-I:NewsScribe - 扩展和增强媒体云可搜索全球在线新闻档案
  • 批准号:
    2341858
    2341858
  • 财政年份:
    2024
  • 资助金额:
    $ 77.79万
    $ 77.79万
  • 项目类别:
    Standard Grant
    Standard Grant
Collaborative Research: HNDS-I: NewsScribe - Extending and Enhancing the Media Cloud Searchable Global Online News Archive
合作研究:HNDS-I:NewsScribe - 扩展和增强媒体云可搜索全球在线新闻档案
  • 批准号:
    2341859
    2341859
  • 财政年份:
    2024
  • 资助金额:
    $ 77.79万
    $ 77.79万
  • 项目类别:
    Standard Grant
    Standard Grant
Collaborative Research: Frameworks: hpcGPT: Enhancing Computing Center User Support with HPC-enriched Generative AI
协作研究:框架:hpcGPT:通过 HPC 丰富的生成式 AI 增强计算中心用户支持
  • 批准号:
    2411297
    2411297
  • 财政年份:
    2024
  • 资助金额:
    $ 77.79万
    $ 77.79万
  • 项目类别:
    Standard Grant
    Standard Grant
Collaborative Research: Frameworks: hpcGPT: Enhancing Computing Center User Support with HPC-enriched Generative AI
协作研究:框架:hpcGPT:通过 HPC 丰富的生成式 AI 增强计算中心用户支持
  • 批准号:
    2411298
    2411298
  • 财政年份:
    2024
  • 资助金额:
    $ 77.79万
    $ 77.79万
  • 项目类别:
    Standard Grant
    Standard Grant