Engineering Quantum Fluctuation Phenomena in Nanoscale Quantum Optical Systems

纳米级量子光学系统中的工程量子涨落现象

基本信息

  • 批准号:
    2309341
  • 负责人:
  • 金额:
    $ 24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-06-15 至 2026-05-31
  • 项目状态:
    未结题

项目摘要

Nanoscale quantum optical systems enhance the efficacy of light-matter interactions by confining light in small regions. Such systems are integral to a myriad of emerging quantum technological applications: from building single-photon devices and storing and transmitting quantum information over long distances, to facilitating precision tests of fundamental physics. Thus, with growing efforts to miniaturize quantum systems, both with the fundamental motivation to explore quantum phenomena at nanoscales and also with the practical goal of developing modular on-chip architectures, atom-surface interactions at nanoscales become a central facet of developing novel quantum systems. However, when interfacing atoms at nanoscales from photonic structures, the ever-present quantum fluctuations of the electromagnetic field critically limit the ability to trap and control atoms. This work will develop ways to engineer such quantum fluctuation phenomena – forces, dissipation and decoherence – by leveraging the collective behavior of atomic systems and the ability to manipulate atoms with lasers. Overcoming these critical challenges in the design of nanoscale quantum systems will enable novel functionalities for quantum devices. In addition to the research goals, the PI will train a diverse undergraduate and graduate student workforce at the exciting intersection of Quantum Science and Engineering. As a part of the educational efforts, the PI will develop a multidisciplinary senior level course on Quantum Optics and Quantum Information, engaging students from a diverse array of Science and Engineering majors. This research will build a driven-dissipative Open Quantum Systems approach to engineering quantum fluctuation phenomena – Casimir-Polder forces, dissipation and decoherence – in collective atomic systems near surfaces with the goal to achieve better control and coherence of nanoscale quantum optical systems. The proposed program will build and advance new tools to control quantum fluctuation phenomena, with four main thrusts: (1) Realizing well-controlled and coherent atomic systems at distances of 10-100 nanometers from surfaces by developing near-surface trapping and cooling schemes; (2) Extending the framework of Casimir Physics and macroscopic QED to study fluctuation phenomena with objects that can be prepared in quantum superpositions, entangled or collective states and driven externally; (3) Guiding experiments on high-precision measurements of Casimir-Polder forces with atomic diffraction via nanogratings for creating repulsive drive induced Casimir-Polder forces and manipulating Casimir-Polder forces using collective effects; and (4) Mitigating fluctuation-induced decoherence in experiments with levitated dielectric nanospheres, to realize macroscopic quantum superpositions and correlated states of levitated nanoparticles.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
纳米级量子光学系统通过将光限制在小区域内来增强光与物质相互作用的效率,此类系统是众多新兴量子技术应用的组成部分:从构建单光子设备、长距离存储和传输量子信息,到促进量子信息的传输。因此,随着对量子系统小型化的不断努力,无论是出于探索纳米尺度量子现象的基本动机,还是出于开发模块化片上架构的实际目标,纳米尺度的原子-表面相互作用成为一个核心。然而,当在纳米尺度上将原子与光子结构连接时,电磁场中始终存在的量子涨落严重限制了捕获和控制原子的能力。力、耗散和退相干——通过利用原子系统的集体行为和用激光操纵原子的能力,克服纳米级量子系统设计中的这些关键挑战将为量子设备带来新的功能。作为教育工作的一部分,PI 将开发量子光学和量子信息的多学科高级课程,吸引来自不同国家的学生。这项研究将建立一种驱动耗散开放量子系统方法来设计附近集体原子系统中的量子涨落现象——卡西米尔-波尔德力、耗散和退相干。该计划将建立和改进控制量子波动现象的新工具,其主要目标有四个:(1)在距离上实现良好控制和相干的原子系统。通过开发近表面捕获和冷却方案,距离表面10-100纳米;(2)扩展卡西米尔物理和宏观QED的框架,以研究可以在量子叠加、纠缠或集体中制备的物体的涨落现象;状态和外部驱动;(3)通过纳米光栅进行原子衍射高精度测量卡西米尔-波尔德力的实验,以产生排斥驱动诱导的卡西米尔-波尔德力并利用集体效应操纵卡西米尔-波尔德力;(4)减轻波动; -在悬浮介电纳米球实验中诱导退相干,以实现悬浮纳米粒子的宏观量子叠加和相关态。该奖项通过使用基金会的智力价值和更广泛的影响审查标准进行评估,NSF 的法定使命被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Scalar QED Model for Polarizable Particles in Thermal Equilibrium or in Hyperbolic Motion in Vacuum
真空中热平衡或双曲线运动中可极化粒子的标量 QED 模型
  • DOI:
    10.3390/physics6010023
  • 发表时间:
    2024-03
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Sinha, Kanu;Milonni, Peter W.
  • 通讯作者:
    Milonni, Peter W.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kanu Sinha其他文献

Quantum Interference of a Microsphere
微球的量子干涉
  • DOI:
  • 发表时间:
    2016-03-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    H. Pino;J. Prat‐Camps;Kanu Sinha;B. Venkatesh;O. Romero
  • 通讯作者:
    O. Romero
Entanglement engineering of optomechanical systems by reinforcement learning
基于强化学习的光机系统纠缠工程
  • DOI:
  • 发表时间:
    2024-06-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Li;Christian Arenz;Kanu Sinha;J. Lukens;Ying
  • 通讯作者:
    Ying
Mirror-field entanglement in a microscopic model for quantum optomechanics
量子光力学微观模型中的镜场纠缠
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kanu Sinha;Shih;B. Hu
  • 通讯作者:
    B. Hu
Repulsive vacuum-induced forces on a magnetic particle
磁性粒子上的真空感应排斥力
  • DOI:
    10.1103/physreva.97.032513
  • 发表时间:
    2017-12-06
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Kanu Sinha
  • 通讯作者:
    Kanu Sinha
Collective radiation from distant emitters
来自遥远发射体的集体辐射
  • DOI:
    10.1103/physreva.102.043718
  • 发表时间:
    2020-06-22
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Kanu Sinha;A. Gonz'alez;Yong Lu;P. Solano
  • 通讯作者:
    P. Solano

Kanu Sinha的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

连续变量量子密钥分发在参考光强度波动下的实际安全性研究
  • 批准号:
    62201530
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
分数量子力学中波动系统的奇异摄动和噪声影响
  • 批准号:
    11571245
  • 批准年份:
    2015
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
极限强激光场中能量和物质相互转化的数值模拟与分析
  • 批准号:
    11374360
  • 批准年份:
    2013
  • 资助金额:
    76.0 万元
  • 项目类别:
    面上项目
非线性色散波方程及量子流体动力学模型的研究
  • 批准号:
    10601061
  • 批准年份:
    2006
  • 资助金额:
    10.0 万元
  • 项目类别:
    青年科学基金项目
对称性破缺对有限系统自旋波和量子波动的影响
  • 批准号:
    10274087
  • 批准年份:
    2002
  • 资助金额:
    26.0 万元
  • 项目类别:
    面上项目

相似海外基金

Increased performance of nanophotonic devices by utilizing structural fluctuation information with deep learning
通过深度学习利用结构波动信息提高纳米光子器件的性能
  • 批准号:
    21K18912
  • 财政年份:
    2021
  • 资助金额:
    $ 24万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Algebraic and decision-theoretic ways into quantum resource theories
量子资源理论的代数和决策理论方法
  • 批准号:
    20K03746
  • 财政年份:
    2020
  • 资助金额:
    $ 24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Observation and control of quantum fluctuation of superfluorescence from high-density quantum systems
高密度量子系统超荧光量子涨落的观测与控制
  • 批准号:
    20K03808
  • 财政年份:
    2020
  • 资助金额:
    $ 24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Diagnosis and therapeutic effect of neurally mediated syncope (NMS) using fluctuation of adenylate cyclase activity
利用腺苷酸环化酶活性波动对神经介导性晕厥(NMS)的诊断和治疗效果
  • 批准号:
    20K08498
  • 财政年份:
    2020
  • 资助金额:
    $ 24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on Intrinsic Mechanism of True Random Number Generation for Absolutely Secure Communications by Using Half Flux Quantum Circuit
半通量量子电路绝对安全通信真随机数生成内在机制研究
  • 批准号:
    20K22412
  • 财政年份:
    2020
  • 资助金额:
    $ 24万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了