Dynamics and catalysis in integral membrane pyrophosphatases

整合膜焦磷酸酶的动力学和催化

基本信息

  • 批准号:
    BB/T006048/2
  • 负责人:
  • 金额:
    $ 21万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

60% of drug targets are integral membrane proteins - but just 3% of all solved structures. In addition, fast kinetic analysis on membrane proteins has been restricted to proteins like cytochrome c oxidase. Integral membrane pyrophosphatases (mPPases) are evolutionarily conserved ionic pumps that convert the free energy in pyrophosphate into a sodium and/or proton gradient across a membrane. They are unlike any other protein, do not occur in multicellular animals, and are essential under conditions of low-energy stress. In addition to plants and (archae)bacteria, mPPases occur in pathogens: protozoan parasites like Leishmania (leishmaniasis), Trypanosoma species (Nagana, sleeping sickness), Toxoplasma gondii (infecting up to 90% of pigs) and Plasmodium species (malaria), as well as Bacteroides vulgatus, which is the most common cause of brain abscesses (20% mortality rate). These diseases affect human health and food security across much of the world, and the protozoan diseases, except for malaria, are classes as "neglected tropical diseases". Due to global warming, the insect vectors that spread these diseases are already spreading into Europe and will be common in the summer in Northern Europe in the next 30 years. We have shown that deleting the mPPase gene in P. falciparum makes it non-infectious. mPPases are thus a potential drug target, and our preliminary work suggests it is suitable for kinetic analysis. Developing drugs against these enzymes will have important long-term benefits for animal health, food security, and human disease, by providing new weapons against major animal and human diseases.This work extends and deepens our ground-breaking structures of the bacterial Na+-pumping Thermotoga maritima mPPase (TmPPase) and H+-pumping Vigna radiata (mung bean) mPPase (VrPPase). With previous BBSRC funding, we developed four novel mPPase inhibitor scaffolds, three of which are active against the malaria parasite at low uM concentrations. The molecules work in unexpected ways, by blocking the exit channel in an allosteric manner. Our vision is to extend our structural studies and use single molecule functional, time-resolved crystallography and molecular dynamics simulations to determine intermediate enzymatic states. Our multidisciplinary approach has two main strands: (1) focussing on understanding the structural correlates behind the different mPPases. There are at least five different families, which pump different ions and respond differently to changes in sodium (Na) and potassium (K) concentration; and (2) using various dynamic (single-molecule fluorescence resonance energy transfer (FRET), time-resolved serial synchrotron crystallography (SSX) and solution (Pulsed Electron-Electron Double Resonance (PELDOR)) approaches to understand the choreography of the enzyme mechanism. The two strands of work inform each other, as the static structural studies will generate hypotheses that can be tested by biophysical techniques.Our aim is to understand what motions in the helices leading to gate opening and thus ion pumping, how these differ between sodium- and proton-pumping mPPases, and how the binding and pumping conformational changes are allosterically transmitted between the two monomers, leading to half-of-the-sites reactivity. The work will use the new allosteric inhibitors that we have developed. We expect our work to be revolutionary in the level of detail we obtain about this enzyme.
60% 的药物靶点是完整的膜蛋白,但仅占所有已解析结构的 3%。此外,膜蛋白的快速动力学分析仅限于细胞色素 c 氧化酶等蛋白质。整体膜焦磷酸酶 (mPPase) 是进化上保守的离子泵,可将焦磷酸盐中的自由能转化为跨膜的钠和/或质子梯度。它们与任何其他蛋白质不同,不存在于多细胞动物中,并且在低能量应激条件下是必需的。除了植物和(古细菌)细菌外,mPPase 还存在于病原体中:原生动物寄生虫,如利什曼原虫(利什曼病)、锥虫属(Nagana,昏睡病)、弓形虫(感​​染高达 90% 的猪)和疟原虫属(疟疾),以及普通拟杆菌,它是脑脓肿的最常见原因(死亡率为 20%) 速度)。这些疾病影响世界大部分地区的人类健康和粮食安全,而除疟疾外的原虫疾病均被归类为“被忽视的热带疾病”。由于全球变暖,传播这些疾病的昆虫媒介已经蔓延到欧洲,并将在未来30年的北欧夏季普遍存在。我们已经证明,删除恶性疟原虫中的 mPPase 基因使其不具有传染性。因此,mPPase 是一个潜在的药物靶点,我们的初步工作表明它适合动力学分析。开发针对这些酶的药物将为动物健康、粮食安全和人类疾病带来重要的长期利益,提供对抗主要动物和人类疾病的新武器。这项工作扩展并深化了我们突破性的细菌钠泵结构Thermotoga maritima mPPase (TmPPase) 和 H+ 泵绿豆 mPPase (VrPPase)。在 BBSRC 之前的资助下,我们开发了四种新型 mPPase 抑制剂支架,其中三种在低 uM 浓度下对疟原虫具有活性。这些分子以意想不到的方式发挥作用,以变构方式阻断出口通道。我们的愿景是扩展我们的结构研究,并使用单分子功能、时间分辨晶体学和分子动力学模拟来确定中间酶状态。我们的多学科方法有两个主要方面:(1) 专注于理解不同 mPPase 背后的结构相关性。至少有五个不同的家族,它们泵送不同的离子,并对钠 (Na) 和钾 (K) 浓度的变化做出不同的反应; (2) 使用各种动态(单分子荧光共振能量转移(FRET)、时间分辨串行同步加速器晶体学(SSX)和溶液(脉冲电子-电子双共振(PELDOR))方法来了解酶机制的编排这两条工作相互告知,因为静态结构研究将产生可以通过生物物理技术进行测试的假设。我们的目的是了解螺旋中的运动会导致什么。栅极打开和离子泵送,钠泵送 mPPase 和质子泵送 mPPase 之间有何不同,以及结合和泵送构象变化如何在两个单体之间变构传递,从而导致该工作将使用一半的位点反应性。我们开发的新变构抑制剂预计我们的工作将在我们获得的有关这种酶的详细信息方面具有革命性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christos Pliotas其他文献

Christos Pliotas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christos Pliotas', 18)}}的其他基金

Greece: Dissecting the physiological role of MscS-like mechanosensitive channels in a model filamentous fungus
希腊:剖析丝状真菌模型中类 MScS 机械敏感通道的生理作用
  • 批准号:
    BB/W018411/2
  • 财政年份:
    2024
  • 资助金额:
    $ 21万
  • 项目类别:
    Research Grant
Deciphering complex machineries that produce ribosomally synthesised natural products
破译生产核糖体合成天然产物的复杂机器
  • 批准号:
    BB/W001985/1
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
    Research Grant
Desiphering the structural origins of functional multimodality in bacterial mechanosensitive ion channels
解析细菌机械敏感离子通道功能多模态的结构起源
  • 批准号:
    BB/S018069/2
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
    Research Grant
BioEmPiRe; Accessing uncharted but essential landscapes to biological machineries by pulse EPR
生物EmPiRe;
  • 批准号:
    BB/W019795/2
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
    Research Grant
Greece: Dissecting the physiological role of MscS-like mechanosensitive channels in a model filamentous fungus
希腊:剖析丝状真菌模型中类 MScS 机械敏感通道的生理作用
  • 批准号:
    BB/W018411/1
  • 财政年份:
    2022
  • 资助金额:
    $ 21万
  • 项目类别:
    Research Grant
BioEmPiRe; Accessing uncharted but essential landscapes to biological machineries by pulse EPR
生物EmPiRe;
  • 批准号:
    BB/W019795/1
  • 财政年份:
    2022
  • 资助金额:
    $ 21万
  • 项目类别:
    Research Grant
Desiphering the structural origins of functional multimodality in bacterial mechanosensitive ion channels
解析细菌机械敏感离子通道功能多模态的结构起源
  • 批准号:
    BB/S018069/1
  • 财政年份:
    2019
  • 资助金额:
    $ 21万
  • 项目类别:
    Research Grant

相似国自然基金

光驱动自由基酶的催化机理研究和理性设计
  • 批准号:
    22337006
  • 批准年份:
    2023
  • 资助金额:
    230 万元
  • 项目类别:
    重点项目
催化烯烃直接硝化的P450过氧化物酶的分子设计与反应机制研究
  • 批准号:
    22307125
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
氢燃料电池铂基氧还原电催化的微环境效应研究
  • 批准号:
    22379002
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于气泡工程的电催化析气电极设计
  • 批准号:
    22379005
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
碳纳米管限域的钴基费托合成催化剂的设计及其催化性能研究
  • 批准号:
    22362030
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Development of biophysical approaches to investigate high-resolution structure and dynamics of membrane proteins
开发生物物理方法来研究膜蛋白的高分辨率结构和动力学
  • 批准号:
    10321560
  • 财政年份:
    2021
  • 资助金额:
    $ 21万
  • 项目类别:
Dynamics and catalysis in integral membrane pyrophosphatases
整合膜焦磷酸酶的动力学和催化
  • 批准号:
    BB/T006048/1
  • 财政年份:
    2020
  • 资助金额:
    $ 21万
  • 项目类别:
    Research Grant
Structure and function of the monotopic phosphoglycosyl transferase superfamily: Initiators of biosynthesis of complex bacterial glycoconjugates
单位磷酸糖基转移酶超家族的结构和功能:复杂细菌糖复合物生物合成的引发剂
  • 批准号:
    10663275
  • 财政年份:
    2019
  • 资助金额:
    $ 21万
  • 项目类别:
Structure and function of the monotopic phosphoglycosyl transferase superfamily: Initiators of biosynthesis of complex bacterial glycoconjugates
单位磷酸糖基转移酶超家族的结构和功能:复杂细菌糖复合物生物合成的引发剂
  • 批准号:
    10316789
  • 财政年份:
    2019
  • 资助金额:
    $ 21万
  • 项目类别:
Structure and function of the monotopic phosphoglycosyl transferase superfamily: Initiators of biosynthesis of complex bacterial glycoconjugates
单位磷酸糖基转移酶超家族的结构和功能:复杂细菌糖复合物生物合成的引发剂
  • 批准号:
    10447209
  • 财政年份:
    2019
  • 资助金额:
    $ 21万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了