Role of the SYM pathway in selecting the root microbiota
SYM 途径在选择根微生物群中的作用
基本信息
- 批准号:BB/R017859/1
- 负责人:
- 金额:$ 77.38万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Plant roots are critical for the uptake of mineral nutrients by plants. In addition, they interact with the soil environment and a complex assemblage of bacteria, fungi, single celled animal cells, nematodes and other organisms. The area directly around roots that is occupied by these organisms is known as the rhizosphere and the collective name for the organisms is the rhizosphere microbiota. Microorganisms also reside inside plant roots, usually between plant cells and are knows as endophytes. Together the rhizosphere and endosphere microbiotas makes up the root microbiota of a plant. It has been shown over the last few years that the root microbiota is critical for the health and growth of plants, with many microorganisms shown to be plant growth promoting. Bacteria are simple single celled microorganisms that lack the membrane bound structures found in higher cells of plants and animals. However, while bacteria may have a less complex cellular organisation they carry out a huge range of chemical reactions not found in plants and animals. Bacteria are responsible for the cycling of many nutrients such as N2 (N2 is also known as nitrogen gas and consists of two nitrogen atoms bound by a strong triple bond), which is a very inert atmospheric gas. N2 makes up 78% of the atmosphere but is very unreactive and cannot be used directly as a source of nitrogen, which is needed for amino acid, protein and DNA synthesis. However, a small number of bacteria can reduce (add hydrogen) to N2 and convert it into ammonia (NH3), which is readily incorporated into amino acids and then all the other building blocks of life, by a wide range of organisms including bacteria and plants. In many parts of the world the limitation to growth of plants, which in turn support animal life, is the supply of nitrogen as ammonia or nitrate. In the past, much of the nitrogen was provided by biological nitrogen fixation, particularly by a group of plants known as legumes. The legumes form nodules on their roots which house bacteria, called rhizobia, which reduce N2 to ammonia and supply it to plants in return for a carbon and energy source. However, more recently legume use has declined and nitrogen is mainly provided to crops by chemically synthesised fertiliser. One of the other limiting nutrients in the biosphere is phosphate, which is often naturally provided to the plant by a group of fungi known as the arbuscular mycorrhizae (AM fungi). Nitrogen and phosphate are so crucial to plant growth and crop yield that they are often both added in very large amounts to agricultural soils. This has led to widespread pollution of ground water with these nutrients, leading to run off into water ways and oceans that causes eutrophication where the growth in particular of algae is promoted. Remarkably it turns out that both AM fungi and rhizobia interact with plants using a common signalling network known as the common symbiosis pathway (SYM). In this work, we are investigating how the SYM pathway controls the microbiota of legumes and cereals. Our aim is to understand how the pathways control different members of the microbiota. In addition, we will move beyond simple characterisation of the components of the microbiota to examine the mechanism of control. This research will lead to a step change in characterisation of the plant microbiota of agriculturally critical crops, including pea and rice. Not only will we characterise which microorganisms are present but we will also culture and characterize the function of key members of the microbiota. This work moves beyond simple characterisation of which microorganisms are present to identification of functional community members.
植物根对于植物摄入矿物质营养至关重要。此外,它们与土壤环境相互作用,并复杂的细菌,真菌,单细胞动物细胞,线虫和其他生物的复杂组合。这些生物占据的根部周围的区域被称为根际,而生物体的集体名称是根际微生物群。微生物也位于植物根部,通常在植物细胞之间,并被称为内生菌。根际和胚层微生物共同构成了植物的根菌群。在过去的几年中,已经表明,根微生物群对于植物的健康和生长至关重要,许多微生物证明是植物生长的促进。细菌是简单的单细胞微生物,缺乏在动植物的较高细胞中发现的膜结构。但是,尽管细菌可能具有不太复杂的细胞组织,但它们在动植物中进行了大量的化学反应。细菌是导致许多营养素(N2)(N2也称为氮气)循环的原因,它是由两个由强三键结合的氮原子组成的),这是一种非常惰性的大气气体。 N2占大气的78%,但没有反应性,不能直接用作氨基酸,蛋白质和DNA合成所需的氮来源。但是,少数细菌可以将氢化(NH3)降低(添加氢),并通过包括细菌和植物在内的广泛的生物体,很容易地掺入氨基酸,然后将其纳入氨基酸,然后将其纳入氨基酸。在世界许多地方,植物生长的局限性又支持动物的生命,是氮作为氨或硝酸盐的供应。过去,许多氮是由生物氮固定提供的,特别是由一组称为豆类的植物。豆科植物在其根部形成结节,这些结节容纳了称为根瘤菌的细菌,可将N2降低至氨,并将其供应植物,以换取碳和能源。但是,最近的豆科植物使用量已经下降,氮主要通过化学合成的肥料提供给农作物。生物圈中限制营养的另一种是磷酸盐,通常由一组被称为羊膜菌根(AM Fungi)的真菌自然提供给植物。氮和磷酸盐对于植物生长和农作物产量至关重要,以至于它们通常都以非常大的农业土壤添加。这导致了这些养分对地下水的广泛污染,从而陷入了水路和海洋,从而导致富营养化的藻类,特别是促进了藻类的生长。值得注意的是,事实证明,AM真菌和根瘤菌都使用称为公共共生途径(SYM)的通用信号网络与植物相互作用。在这项工作中,我们正在研究SYM途径如何控制豆类和谷物的微生物群。我们的目的是了解途径如何控制微生物群的不同成员。此外,我们将超越对菌群组成部分的简单表征,以检查对照机理。这项研究将导致在包括豌豆和大米在内的农业关键作物的植物菌群的表征变化。我们不仅会表征存在哪些微生物,而且我们还将培养和表征微生物群的关键成员的功能。这项工作超出了对功能社区成员识别的微生物的简单表征。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Genome-Scale Metabolic Modelling of Lifestyle Changes in Rhizobium leguminosarum.
- DOI:10.1128/msystems.00975-21
- 发表时间:2022-02-22
- 期刊:
- 影响因子:6.4
- 作者:Schulte CCM;Ramachandran VK;Papachristodoulou A;Poole PS
- 通讯作者:Poole PS
Postnatal prebiotic supplementation in rats affects adult anxious behaviour, hippocampus, electrophysiology, metabolomics, and gut microbiota.
- DOI:10.1016/j.isci.2021.103113
- 发表时间:2021-10-22
- 期刊:
- 影响因子:5.8
- 作者:Spitzer SO;Tkacz A;Savignac HM;Cooper M;Giallourou N;Mann EO;Bannerman DM;Swann JR;Anthony DC;Poole PS;Burnet PWJ
- 通讯作者:Burnet PWJ
Multimodal correlative imaging and modelling of phosphorus uptake from soil by hyphae of mycorrhizal fungi.
- DOI:10.1111/nph.17980
- 发表时间:2022-04
- 期刊:
- 影响因子:9.4
- 作者:Keyes, Sam;van Veelen, Arjen;Fletcher, Dan McKay;Scotson, Callum;Koebernick, Nico;Petroselli, Chiara;Williams, Katherine;Ruiz, Siul;Cooper, Laura;Mayon, Robbie;Duncan, Simon;Dumont, Marc;Jakobsen, Iver;Oldroyd, Giles;Tkacz, Andrzej;Poole, Philip;Mosselmans, Fred;Borca, Camelia;Huthwelker, Thomas;Jones, David L.;Roose, Tiina
- 通讯作者:Roose, Tiina
Role and Regulation of Poly-3-Hydroxybutyrate in Nitrogen Fixation in Azorhizobium caulinodans.
聚 3-羟基丁酸酯在 Azorhizobium caulinodans 固氮中的作用和调节。
- DOI:10.1094/mpmi-06-21-0138-r
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Crang N
- 通讯作者:Crang N
Genome-scale metabolic modelling of lifestyle changes in Rhizobium leguminosarum
豆根瘤菌生活方式变化的基因组规模代谢模型
- DOI:10.1101/2021.07.28.454262
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Schulte C
- 通讯作者:Schulte C
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Philip Poole其他文献
Philip Poole的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Philip Poole', 18)}}的其他基金
Factors controlling N2-fixing ability and competitiveness of rhizobia to nodulate legumes
根瘤菌固氮能力及豆科植物结瘤竞争力的控制因素
- 批准号:
BB/W006219/1 - 财政年份:2022
- 资助金额:
$ 77.38万 - 项目类别:
Research Grant
Engineering synthetic signalling between plants and microbes
植物和微生物之间的工程合成信号传导
- 批准号:
BB/T006722/1 - 财政年份:2020
- 资助金额:
$ 77.38万 - 项目类别:
Research Grant
Genetic Determinants of Microbiome Assembly on Plant Roots
植物根部微生物组组装的遗传决定因素
- 批准号:
BB/T001801/1 - 财政年份:2019
- 资助金额:
$ 77.38万 - 项目类别:
Research Grant
India-UK Nitrogen Fixation Centre (IUNFC)
印度-英国固氮中心 (IUNFC)
- 批准号:
BB/N013387/1 - 财政年份:2016
- 资助金额:
$ 77.38万 - 项目类别:
Research Grant
Phyloquant Metagenomic Identification and Quantification Technology
Phyloquant 宏基因组鉴定和定量技术
- 批准号:
BB/N016335/1 - 财政年份:2015
- 资助金额:
$ 77.38万 - 项目类别:
Research Grant
ENGINEERING SYNTHETIC SYMBIOSES BETWEEN PLANTS AND BACTERIA TO DELIVER NITROGEN TO CROPS
工程植物和细菌之间的合成共生向农作物提供氮
- 批准号:
BB/L011484/1 - 财政年份:2014
- 资助金额:
$ 77.38万 - 项目类别:
Research Grant
Mechanism of global regulation of ATP dependent transporters by PTS-NTR
PTS-NTR对ATP依赖性转运蛋白的全局调节机制
- 批准号:
BB/K006134/1 - 财政年份:2013
- 资助金额:
$ 77.38万 - 项目类别:
Research Grant
Spatial and temporal mapping of the pea root secretome and its control of bacterial rhizosphere colonisation
豌豆根分泌组的时空图谱及其对细菌根际定植的控制
- 批准号:
BB/K001868/2 - 财政年份:2013
- 资助金额:
$ 77.38万 - 项目类别:
Research Grant
Spatial and temporal mapping of the pea root secretome and its control of bacterial rhizosphere colonisation
豌豆根分泌组的时空图谱及其对细菌根际定植的控制
- 批准号:
BB/K001868/1 - 财政年份:2012
- 资助金额:
$ 77.38万 - 项目类别:
Research Grant
相似国自然基金
面向软件安全漏洞检测与分析的智能化符号执行方法研究
- 批准号:61872386
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
参数半代数系统的误差可控计算理论与算法
- 批准号:11771421
- 批准年份:2017
- 资助金额:48.0 万元
- 项目类别:面上项目
基于结合面误差建模的复杂装配体精度预测方法研究
- 批准号:51705441
- 批准年份:2017
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
基于动态符号执行的MSVL程序模型检测
- 批准号:61572386
- 批准年份:2015
- 资助金额:65.0 万元
- 项目类别:面上项目
基于云计算与动态符号执行的大型软件自动化测试研究
- 批准号:61402080
- 批准年份:2014
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Challenge to the sign problem via path optimization
通过路径优化挑战符号问题
- 批准号:
19H01898 - 财政年份:2019
- 资助金额:
$ 77.38万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Research and Development of Constraint Programming Systems for Metabolic Pathway Analysis
代谢途径分析约束编程系统的研究与开发
- 批准号:
25730042 - 财政年份:2013
- 资助金额:
$ 77.38万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
神径回路網を用いた誤り訂正符号の復号器に関する研究
基于多路网络的纠错码译码器研究
- 批准号:
02855076 - 财政年份:1990
- 资助金额:
$ 77.38万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)