3D-Printed Platforms to Study and Utilise the Photoelectrochemistry of Photosynthetic Biofilms

研究和利用光合生物膜光电化学的 3D 打印平台

基本信息

  • 批准号:
    BB/R011923/1
  • 负责人:
  • 金额:
    $ 129.93万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    未结题

项目摘要

The aim of this research, which is to be carried out at the University of Cambridge, is to 3D-print platforms for studying and utilising biofilms. The propensity for microorganisms to form biofilms on surfaces can have profoundly contrasting implications in different contexts. For example, microbial biofilms are a large problem in the medical industry since they can be highly resistant to antibiotics whilst at the same time causing up to 80% of infections, according to the US National Institutes of Health. On the other hand, there is a large community who are harnessing the metabolic power of biofilms to remediate waste water, carry out chemical synthesis, and generate electricity in an inexpensive and renewable manner. For example, photosynthetic microorganisms, including cyanobacteria and algae, have been recruited to form biofilms on conductive substrates so that it would injects charges into the substrate during light irradiation, much like solar cells, in what is known as bio-photovoltaics. Both separate efforts to eradicate and exploit microbial biofilms are currently hindered by knowledge gaps within the complex field of biofilm biology, where the interfacial biofilm-material interactions that govern biofilm physiology are not well understood. We want to develop a platform in which the surface morphology of different materials can be precisely controlled to study and control the number of cells the scaffold can accommodate. This will be done using of 3D-printing, a powerful prototyping tool used in a wide range of applications. As a starting point, this research will focus on using 3D-printing to optimise cyanobacterial loading into a conductive scaffold. The improvement in loading is expected to improve the solar-to-power conversion efficiency of bio-photovoltaics, which is currently very inefficient. The idea is to use 3D-printing to build a library of conductive 3D scaffolds varying in dimensions, morphological features, roughness, and materials, and screen these for high cell loading, biofilm formation, and test them under light irradiation to measure solar-to-charge output. An important parallel aim of this project is to understand the underlying mechanisms that give rise to the exchange of energy/charges between the organisms and the material during light irradiation. Currently, it is not known whether this exchange is due to a self-protective mechanism by photosynthetic organisms, a mode of cell-cell communication, or to what extent it is detrimental or beneficial to the physiology of the biofilm. To answer these questions, advanced imaging and spectroscopic techniques will be adapted to probe the distribution and chemistry of common cellular components within the biofilm during dark and light cycles. When the two parts of the project are married up, more wholistic strategies to facilitate efficient exchange between the biofilm and the conductive scaffold can be designed - either through bioengineering of the cells and/or through altering the structure/composition of the scaffold. The most important outcome of this research is that the new platforms will open up the study and ultilisation of biofilms in a large number of applications and research fields. The 3D-printing and imaging strategies developed in this study can be adapted to improve biofilm-materials interactions in current and upcoming biofilm biotechnologies and reactors. Similarly, they can also be adapted for biomedical research to, for example, screen anti-biofilm drugs, study biofilm resistance, and study problems in the large world beyond microbial systems (such as mammalian cells). A more direct outcome of this project would be the generation of valuable lessons and benchmark systems for bio-photovoltaics, which would benefit renewable energy research. We would also unravel a little more the fascinating photobiology of cyanobacteria, which play indispensable roles in the Earth's ecology.
这项研究的目的是在剑桥大学进行,是针对研究和利用生物膜的3D Print平台。微生物在表面上形成生物膜的倾向可能在不同情况下具有深远的对比。例如,根据美国国立卫生研究院的数据,微生物生物膜在医疗行业是一个大问题,因为它们可以高度抗药性,同时引起高达80%的感染。另一方面,有一个大型社区正在利用生物膜的代谢能力来补救废水,进行化学合成,并以廉价且可再生的方式发电。例如,已经招募了包括蓝细菌和藻类在内的光合微生物在电导底物上形成生物膜,以便在光照射期间将电荷注入底物,就像太阳能电池一样,在所谓的Bio-Photovaltaics中。 目前,在生物膜生物学的复杂领域内的知识差距阻碍了两种单独的消除和利用微生物生物膜的努力,在该领域中,界面生物膜材料 - 材料相互作用控制生物膜生理的两种相互作用尚未得到充分了解。我们希望开发一个平台,在该平台中,可以精确控制不同材料的表面形态,以研究和控制脚手架可以容纳的细胞数量。这将使用3D打印(一种强大的原型制作工具,用于广泛的应用程序。作为起点,这项研究将集中于使用3D打印,以将蓝细菌的负载优化为导电支架。预计加载的改善将提高生物 - 波伏烷基的太阳能转换效率,这目前非常效率低下。这个想法是使用3D打印来构建一个导电3D脚手架的库,其尺寸,形态特征,粗糙度和材料各不相同,并将其筛选为高细胞负载,生物膜形成,并在光照射下测试它们以测量太阳能到达输出。该项目的一个重要平行目的是了解产生生物体和材料之间在光照射期间的能量/电荷交换的基本机制。目前,尚不清楚这种交换是否是由于光合生物的自我保护机制,一种细胞 - 细胞通信模式,还是对生物膜的生理有害或有益的程度。为了回答这些问题,将在黑暗和光周期期间调整高级成像和光谱技术以探测生物膜中常见细胞成分的分布和化学。当项目的两个部分已婚时,可以通过生物工程来设计细胞和/或通过改变支架的结构/组成,以促进生物膜和导电支架之间有效交换的更为全面的策略。 这项研究的最重要结果是,新平台将在许多应用程序和研究领域开放生物膜的研究和启用。这项研究中开发的3D打印和成像策略可以改善以改善当前和即将到来的生物膜生物技术和反应堆中的生物膜材料相互作用。同样,它们也可以适应生物医学研究,例如筛查抗生物胶片药,研究生物膜耐药性以及研究大世界以外的微生物系统(例如哺乳动物细胞)的问题。该项目的一个更直接的结果将是生成生物 - 伏托洛抗洛伏特甲基的有价值的课程和基准系统,这将使可再生能源研究受益。我们还将更多地揭开蓝细菌的迷人光生物学,这些光生物学在地球的生态学中起着必不可少的作用。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Rewiring photosynthetic electron transport chains for solar energy conversion
  • DOI:
    10.1038/s44222-023-00093-x
  • 发表时间:
    2023-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Lawrence;R. M. Egan;Thomas Hoefer;A. Scarampi;Linying Shang;Christopher J. Howe;Jenny Z. Zhang
  • 通讯作者:
    J. Lawrence;R. M. Egan;Thomas Hoefer;A. Scarampi;Linying Shang;Christopher J. Howe;Jenny Z. Zhang
Phenazines as model low-midpoint potential electron shuttles for photosynthetic bioelectrochemical systems.
  • DOI:
    10.1039/d0sc05655c
  • 发表时间:
    2021-01-15
  • 期刊:
  • 影响因子:
    8.4
  • 作者:
    Clifford ER;Bradley RW;Wey LT;Lawrence JM;Chen X;Howe CJ;Zhang JZ
  • 通讯作者:
    Zhang JZ
A modular toolset for electrogenetics
  • DOI:
    10.1101/2021.09.10.459750
  • 发表时间:
    2021-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Lawrence;Y. Yin;P. Bombelli;A. Scarampi;M. Storch;L. Wey;A. Climent-Catala;G. Baldwin;D. O’Hare;C. Howe;J. Zhang;T. Ouldridge;R. Ledesma‐Amaro
  • 通讯作者:
    J. Lawrence;Y. Yin;P. Bombelli;A. Scarampi;M. Storch;L. Wey;A. Climent-Catala;G. Baldwin;D. O’Hare;C. Howe;J. Zhang;T. Ouldridge;R. Ledesma‐Amaro
Photosynthesis re-wired on the pico-second timescale
光合作用在皮秒时间尺度上重新布线
  • DOI:
    10.48550/arxiv.2201.13370
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Baikie T
  • 通讯作者:
    Baikie T
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jenny Zhang其他文献

Real-world treatment pattern and drop-off among recurrent or metastatic cervical cancer patients: A US community oncology-based analysis (304)
  • DOI:
    10.1016/s0090-8258(22)01526-8
  • 发表时间:
    2022-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ding He;Jie Ting;Jenny Zhang;Bradley Monk;Zachary Alholm;Lavanya Sudharshan
  • 通讯作者:
    Lavanya Sudharshan
its absence in asthma Potent bronchoprotective effect of deep inspiration and
哮喘中缺乏它 深吸气和深吸气具有强大的支气管保护作用
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Permutt;B. Laube;N. Scichilone;C. Pascoe;G. Donovan;Y. Bossé;C. Seow;P. Paré;Jenny Zhang;Brandon A. Norris;Linhong Deng;Leslie Y. M. Chin;H. Syyong;Lu Wang;D. Hillman;H. Mitchell;P. Noble;T. Ansell;P. McFawn;R. McLaughlin;D. Sampson
  • 通讯作者:
    D. Sampson
High-temperature, radiation-hard electronic technology
高温、抗辐射电子技术
  • DOI:
    10.1063/1.47178
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    L. Sadwick;Jenny Zhang;D.J. Schaeffer;D. Petelenz;R. Crofts;Yao‐Hsien Feng;R. J. Hwu;G. Sandquist;D. Slaughter
  • 通讯作者:
    D. Slaughter
CEO incentives and the health of defined benefit pension plans
首席执行官激励措施和固定福利养老金计划的健康状况
  • DOI:
    10.1007/s11142-015-9332-0
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Joy Begley;Sandra Chamberlain;Shuo Yang;Jenny Zhang
  • 通讯作者:
    Jenny Zhang
Social media advice and its impact on belief revision
社交媒体建议及其对信念修正的影响

Jenny Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jenny Zhang', 18)}}的其他基金

Engineering Semi-Artificial Cells for New-to-Nature Photosynthesis
工程半人工细胞用于新的自然光合作用
  • 批准号:
    BB/Y008308/1
  • 财政年份:
    2024
  • 资助金额:
    $ 129.93万
  • 项目类别:
    Research Grant
Directed Co-evolution of Next Generation Biohybrids for Energy Conversion
用于能量转换的下一代生物混合体的定向协同进化
  • 批准号:
    EP/Z000440/1
  • 财政年份:
    2024
  • 资助金额:
    $ 129.93万
  • 项目类别:
    Research Grant

相似国自然基金

面向3D打印平行机的精确调度算法与动态调整机制研究
  • 批准号:
    72301196
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
适于3D打印的肌球蛋白微凝胶Pickering乳液富脂鱼糜的稳定机制
  • 批准号:
    32360595
  • 批准年份:
    2023
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
基于3D生物打印类器官模型探究PAK5调控三阴性乳腺癌铂类耐药的机制研究
  • 批准号:
    82303979
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
构建生物3D打印类器官芯片模型研究弹性蛋白-整合素在胃癌免疫微环境中的作用
  • 批准号:
    32371472
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于宏微功能基元的4D打印NiTi合金制备研究
  • 批准号:
    52371027
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目

相似海外基金

Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    $ 129.93万
  • 项目类别:
    Studentship
STTR Phase II: Fabrication and Structural Testing of a 3D Concrete Printed Anchor for Floating Offshore Wind
STTR 第二阶段:用于浮动海上风电的 3D 混凝土打印锚的制造和结构测试
  • 批准号:
    2333306
  • 财政年份:
    2024
  • 资助金额:
    $ 129.93万
  • 项目类别:
    Cooperative Agreement
Reverse Design of Tuneable 4D Printed Materials for Soft Robotics
用于软体机器人的可调谐 4D 打印材料的逆向设计
  • 批准号:
    DE240100960
  • 财政年份:
    2024
  • 资助金额:
    $ 129.93万
  • 项目类别:
    Discovery Early Career Researcher Award
Cutting-edge bio-material for 3D printed bone fixation plates
用于 3D 打印骨固定板的尖端生物材料
  • 批准号:
    24K20065
  • 财政年份:
    2024
  • 资助金额:
    $ 129.93万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Empowering Wearable Smart Devices with 3D Printed Energy Storage
通过 3D 打印能量存储为可穿戴智能设备提供支持
  • 批准号:
    DP240100892
  • 财政年份:
    2024
  • 资助金额:
    $ 129.93万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了