Molecular and cellular dissection of kinesin motors in Apicomplexa to reveal roles in parasite proliferation

顶端复合体中驱动蛋白马达的分子和细胞解剖揭示了寄生虫增殖中的作用

基本信息

  • 批准号:
    BB/N018176/1
  • 负责人:
  • 金额:
    $ 49.81万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2017
  • 资助国家:
    英国
  • 起止时间:
    2017 至 无数据
  • 项目状态:
    已结题

项目摘要

The purpose of this research is to discover how replication of intracellular parasites is driven at a molecular and cellular level. We will focus our studies on Apicomplexan parasites because they are pathogens that cause diseases that are medically and economically important. These include Babesia, Eimeria and Neospora - which affect domesticated livestock causing huge economic losses - and Plasmodia, which causes malaria in a variety of vertebrates including man and kills 584,000 humans worldwide. The life cycles of these parasites are complex and alternate between sexual and asexual replicative stages in distinct hosts. Their replicative and proliferative mechanisms are just beginning to be understood. By understanding how these parasites replicate, we hope to first, provide general insight into the mechanisms and evolution of cell replication. Secondly, we hope to uncover unique features of parasite specific replication because this knowledge promises to help in the development of novel anti-parasite drugs.In the same way as our bodies have a skeleton that provides us with support and strength, the cells of parasites have a skeleton - called the cytoskeleton - which also provides support and structure. The cytoskeleton is involved in many important aspects of the parasite life cycle, including cellular transport, architecture and replication. Studying the cytoskeleton is important both so we can understand how normal cells work and how the parasite cytoskeleton differs from the host cells that they infect. This knowledge can be used to specifically target the cytoskeleton of pathogenic organisms with drugs that kill these organisms and prevent disease.In particular, this project will focus on a part of the cytoskeleton called microtubules. These are long cylindrical structures that act like tracks along which molecular transport motors carry cellular cargo. The motors that we will study are called kinesins and there are many different types, all of which move along microtubules. In this project, we will be investigating kinesins thought to be important for cell replication. We want to know both how parasite kinesins use cellular fuel to move along microtubules during replication and in what cellular context they perform these roles.The work by the Birkbeck research team will involve studying the three-dimensional structure of the cytoskeleton, because knowing what the cytoskeleton looks like will contribute to our understanding of how it works in the parasites themselves. We will use a very powerful microscope - an electron microscope - to take pictures of individual cytoskeleton molecules and then use computational analysis to combine these pictures and calculate their three-dimensional shape. A very important aspect of the proposed project is that we will also study the function of kinesins in malaria parasites themselves, in collaboration with experts in parasite cell biology at the University of Nottingham. Unlike many other such disease-causing parasites, our collaborators at Nottingham work on a species of malaria parasite (called P. berghei) that can be studied at all stages of its complex life cycle that are involved in the pathogenesis and transmission of the infection. Along with the ease with which this parasite can be genetically manipulated, this means that the contributions of different kinesins to parasite cell replication can be tested systematically.Initial analysis suggests that the kinesins from parasites such as malaria are different compared to kinesins from other organisms, including livestock and humans. This means that we might be able to find drugs that can block parasite kinesins - and thereby parasite replication - and not human kinesins. Such drugs could be very promising for development as anti-parasite treatments. Studying the structure and function of the parasite kinesins will allow us to investigate this idea.
这项研究的目的是发现细胞内寄生虫的复制是如何以分子和细胞水平驱动的。我们将研究将研究重点放在Apicomplexan寄生虫上,因为它们是导致医学和经济上重要的疾病的病原体。其中包括贝贝西亚,艾氏菌和新孢子 - 影响驯养的牲畜造成巨大的经济损失 - 以及疟原虫,这会导致包括人类在内的各种脊椎动物中的疟疾,并杀死全球584,000人。这些寄生虫的生命周期是复杂的,并且在不同宿主的性和无性复制阶段之间进行了交替。它们的复制和增生机制才开始被理解。通过了解这些寄生虫如何复制,我们希望首先提供对细胞复制机制和演变的一般见解。其次,我们希望揭示寄生虫特定复制的独特特征,因为这些知识有望帮助开发新型的抗寄生虫药物。就像我们的身体具有为我们提供支撑和力量的骨骼相同的方式,寄生虫的细胞具有骨骼 - 称为细胞骨架 - 也提供了支撑和结构。细胞骨架参与寄生虫生命周期的许多重要方面,包括细胞运输,建筑和复制。研究细胞骨架非常重要,因此我们可以理解正常细胞的工作原理以及寄生虫细胞骨架与它们感染的宿主细胞的不同。这些知识可用于特异性地靶向致病生物的细胞骨架,用杀死这些生物并预防疾病的药物。尤其是,该项目将集中在一部分被称为微管的细胞骨架上。这些是长的圆柱结构,就像沿着分子传输电动机携带细胞货物的轨道一样。我们将研究的电动机称为动力素,并且有许多不同的类型,所有类型都沿着微管移动。在这个项目中,我们将调查被认为对细胞复制很重要的驱动蛋白。我们想知道如何在复制过程中使用细胞燃料沿微管沿微管移动,并且在蜂窝界的何种情况下,它们都会扮演这些角色。伯克贝克研究团队的工作将涉及研究细胞骨架的三维结构,因为知道什么是在了解我们对帕拉斯派对自己的工作方式的理解。我们将使用非常强大的显微镜(电子显微镜)拍摄单个细胞骨架分子的照片,然后使用计算分析组合这些图片并计算其三维形状。拟议项目的一个非常重要的方面是,我们还将与诺丁汉大学的寄生虫细胞生物学专家合作研究驱动蛋白本身中驱动蛋白的功能。与许多其他引起疾病的寄生虫不同,我们在诺丁汉的合作者从事一种疟疾寄生虫(称为P. berghei),可以在其复杂生命周期的各个阶段进行研究,这些阶段与感染的发病机理和传播有关。除了可以在遗传上操纵这种寄生虫的易感性,这意味着可以系统地测试不同的驱动蛋白对寄生虫细胞复制的贡献。这表明,与其他生物体(包括Livestock和人类)的驱动器相比,来自疟疾的寄生虫的驱动素是不同的。这意味着我们可能能够找到可以阻止寄生虫驱动蛋白的药物 - 从而寄生虫复制 - 而不是人类驱动剂。作为抗寄生虫治疗的发展可能是非常有希望的。研究寄生虫驱动蛋白的结构和功能将使我们能够研究这一想法。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mechanochemical tuning of a kinesin motor essential for malaria parasite transmission.
  • DOI:
    10.1038/s41467-022-34710-x
  • 发表时间:
    2022-11-16
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Liu, Tianyang;Shilliday, Fiona;Cook, Alexander D.;Zeeshan, Mohammad;Brady, Declan;Tewari, Rita;Sutherland, Colin J.;Roberts, Anthony J.;Moores, Carolyn A.
  • 通讯作者:
    Moores, Carolyn A.
Plasmodium berghei kinesin-5 associates with the spindle apparatus during cell division and is important for efficient production of infectious sporozoites
伯氏疟原虫驱动蛋白-5 在细胞分裂过程中与纺锤体结合,对于有效产生感染性子孢子非常重要
  • DOI:
    10.1101/2020.07.03.186031
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zeeshan M
  • 通讯作者:
    Zeeshan M
Mechanochemical tuning of a kinesin motor essential for malaria parasite transmission
疟疾寄生虫传播所必需的驱动蛋白马达的机械化学调节
  • DOI:
    10.1101/2022.02.11.480087
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Liu T
  • 通讯作者:
    Liu T
Plasmodium berghei Kinesin-5 Associates With the Spindle Apparatus During Cell Division and Is Important for Efficient Production of Infectious Sporozoites.
Lattice defects induced by microtubule-stabilizing agents exert a long-range effect on microtubule growth by promoting catastrophes.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Carolyn Moores其他文献

The Molecular Mechanism of the Multi-Tasking Kinesin-8 Motor
  • DOI:
    10.1016/j.bpj.2009.12.896
  • 发表时间:
    2010-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Carsten Peters;Katjuša Brejc;Lisa Belmont;Andrew Bodey;Yan Lee;Ming Yu;Shyam Ramchandani;Jun Guo;Serge Lichtsteiner;Kenneth Wood;Roman Sakowicz;Jim Hartman;Carolyn Moores
  • 通讯作者:
    Carolyn Moores
The ATP State of a Mitotic Kinesin-5 Bound to Microtubules
  • DOI:
    10.1016/j.bpj.2008.12.1892
  • 发表时间:
    2009-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Andrew Bodey;Masahide Kikkawa;Carolyn Moores
  • 通讯作者:
    Carolyn Moores
Structural Model for Preferential Microtubule Minus End Binding by CAMSAP CKK Domains
  • DOI:
    10.1016/j.bpj.2017.11.2773
  • 发表时间:
    2018-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    Joseph Atherton;Kai Jiang;Marcel Stangier;Yanzhang Luo;Shasha Hua;Klaartje Houben;Guido Scarabelli;Agnel Joseph;Anthony Roberts;Barry Grant;Maya Topf;Michel Steinmetz;Marc Baldus;Anna Akhmanova;Carolyn Moores
  • 通讯作者:
    Carolyn Moores
Small Loops Make a Big Difference: Insight into the Molecular Mechanism of the Multi-Tasking Kinesin-8 Motor
  • DOI:
    10.1016/j.bpj.2010.11.067
  • 发表时间:
    2011-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    Carolyn Moores;Carsten Peters;Katjusa Brejc;Lisa Belmont;Andrew Bodey;Yan Lee;Ming Yu;Jun Guo;Roman Sakowicz;James Hartman
  • 通讯作者:
    James Hartman

Carolyn Moores的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Carolyn Moores', 18)}}的其他基金

Regulation and resilience of the neuronal microtubule cytoskeleton in health and disease
健康和疾病中神经元微管细胞骨架的调节和恢复能力
  • 批准号:
    MR/Y000633/1
  • 财政年份:
    2023
  • 资助金额:
    $ 49.81万
  • 项目类别:
    Research Grant
Cellular machinery in situ by correlative microscopy
通过相关显微镜观察原位细胞机械
  • 批准号:
    MR/X013359/1
  • 财政年份:
    2022
  • 资助金额:
    $ 49.81万
  • 项目类别:
    Research Grant
Building blocks of molecular complexity: the neuronal cytoskeleton in health and disease
分子复杂性的组成部分:健康和疾病中的神经元细胞骨架
  • 批准号:
    MR/R000352/1
  • 财政年份:
    2017
  • 资助金额:
    $ 49.81万
  • 项目类别:
    Research Grant
3d ultrastructural analysis of the subcellular organisation of inner hair cells and of their innervation during ageing.
内毛细胞的亚细胞组织及其衰老过程中的神经支配的 3D 超微结构分析。
  • 批准号:
    BB/M006476/1
  • 财政年份:
    2015
  • 资助金额:
    $ 49.81万
  • 项目类别:
    Research Grant
Molecular mechanisms of kinesin-5s in fungal mitosis
驱动蛋白-5s在真菌有丝分裂中的分子机制
  • 批准号:
    BB/L00190X/1
  • 财政年份:
    2014
  • 资助金额:
    $ 49.81万
  • 项目类别:
    Research Grant
Molecular reconstitution of cellular machinery essential for neuronal development
神经元发育所必需的细胞机器的分子重建
  • 批准号:
    MR/J000973/1
  • 财政年份:
    2012
  • 资助金额:
    $ 49.81万
  • 项目类别:
    Research Grant
Elucidating the on/off switch for an essential mitotic motor
阐明重要的有丝分裂马达的开关
  • 批准号:
    BB/H005137/1
  • 财政年份:
    2010
  • 资助金额:
    $ 49.81万
  • 项目类别:
    Research Grant
Elucidating the mechanism of microtubule depolymerisation by Kip3D kinesin
阐明 Kip3D 驱动蛋白微管解聚机制
  • 批准号:
    BB/D008921/1
  • 财政年份:
    2006
  • 资助金额:
    $ 49.81万
  • 项目类别:
    Research Grant

相似国自然基金

Bmi1-p16信号轴通过抑制颗粒细胞衰老发挥延缓卵巢衰老的作用及机制研究
  • 批准号:
    81901436
  • 批准年份:
    2019
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
肝脏不同解剖区域巨噬细胞功能异质性的调控网络研究
  • 批准号:
    91842101
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    重大研究计划
视觉选择性注意相关皮层区域不同种类神经元的3D解剖学连接图谱及功能学连接图谱
  • 批准号:
    31871051
  • 批准年份:
    2018
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目
多伞阿魏树脂道的形成机制及响应茉莉酸的细胞学研究
  • 批准号:
    31860041
  • 批准年份:
    2018
  • 资助金额:
    38.0 万元
  • 项目类别:
    地区科学基金项目
竹材的纹孔特征
  • 批准号:
    31770599
  • 批准年份:
    2017
  • 资助金额:
    61.0 万元
  • 项目类别:
    面上项目

相似海外基金

Molecular dissection of extrachromosomal DNA formation, development, and evolution
染色体外 DNA 形成、发育和进化的分子解剖
  • 批准号:
    10640520
  • 财政年份:
    2023
  • 资助金额:
    $ 49.81万
  • 项目类别:
Biophysical, Structural, and Cellular Dissection of COPI-Dependent Retrograde Trafficking Using a Coronavirus Toolkit
使用冠状病毒工具包对 COPI 依赖性逆行贩运进行生物物理、结构和细胞解剖
  • 批准号:
    10646999
  • 财政年份:
    2023
  • 资助金额:
    $ 49.81万
  • 项目类别:
Converting cytoskeletal forces into biochemical signals
将细胞骨架力转化为生化信号
  • 批准号:
    10655891
  • 财政年份:
    2023
  • 资助金额:
    $ 49.81万
  • 项目类别:
ELAVL1 role in glioblastoma heterogeneity through intercellular gene transfer mediated by cell fusion and tunneling membrane nanotube formation
ELAVL1通过细胞融合和隧道膜纳米管形成介导的细胞间基因转移在胶质母细胞瘤异质性中的作用
  • 批准号:
    10658226
  • 财政年份:
    2023
  • 资助金额:
    $ 49.81万
  • 项目类别:
BLRD Research Career Scientist Award Application
BLRD 研究职业科学家奖申请
  • 批准号:
    10582394
  • 财政年份:
    2023
  • 资助金额:
    $ 49.81万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了