Enabling synthetic biology with an expanded library of engineered orthogonal genetic logic gates and switches
通过扩展的工程正交遗传逻辑门和开关库实现合成生物学
基本信息
- 批准号:BB/N007212/1
- 负责人:
- 金额:$ 44.13万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2016
- 资助国家:英国
- 起止时间:2016 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
An important goal of synthetic biology is the rational design and predictable implementation of synthetic gene circuits using standardised and interchangeable parts to program cellular behaviour. However, unlike electronic digital circuits, the components in a biological circuit are not connected by wires with physical insulation, and the flow of biological information has to depend on their specific chemical interactions to avoid cross talk. As a result, the same genetic part may not be used twice in one integrated system to prevent the potential unintended interactions between them. Therefore, orthogonal parts and modules are necessary for the compatibility and scalable design of large gene circuits comprising many components. Orthogonality implies that the newly added parts and modules should not cross-talk with those present in the engineered biological systems as well as the host genetic background. Most of the gene circuits constructed so far are small scale systems that have been constructed by costly and inefficient 'trial-and-error' methods with very limited parts. For example, it has taken almost 12 years to progress from the first 3-gene toggle switch to the so far largest constructed 11-gene 4-input AND logic gate in a single cell. A hard truth behind this slowness is that the engineering of complex circuits in living cells is currently limited by the availability of well-characterised and orthogonal (non cross-talk) genetic regulatory building blocks. Hence, an urgent need in synthetic biology is to expand the currently limited toolbox of biological parts with many functional orthogonal elements to scale up our capacity for building large and complex circuits.Nevertheless, it remains a big foundational challenge to expand the range of available orthogonal components in the synthetic biology toolbox. This project aims to address this challenge by developing two novel scalable tools to engineer an expanded library of versatile orthogonal genetic building blocks. In particular, we will build a library of modular and orthogonal genetic NAND and NOR logic gates; these are universal logic gates and their combinations can be used to accomplish any arbitrary complex Boolean logic operations, providing a powerful scalable method for cellular process control. Further, we will create multi-layer genetic programs from different permutations of these engineered logic gates to demonstrate the potential for composing high-order signal processing and transcriptional control functions in a single cell. For example, the engineered genetic programs will be used to implement a high level logic computing device - 1 bit full adder that intake three chemical inputs in specified logic manners to produce two optical outputs. In addition, we will demonstrate that large complex transcriptional control programs can be implemented in a microbial cell factory to precisely and rapidly tune gene expression profiles within the biosynthesis pathway of a high value chemical (violacein).The engineered scalable tools from this study will increase significantly the number of orthogonal control elements, gates and wires in the limited toolbox of synthetic biology, leading to large-scale complex genetic control programs attainable to program advanced behaviours in cells. The successful outcome will lead to a number of applications expected in the biotechnology industry (high gain), and will be of enormous benefit to researchers not only in the synthetic biology and but also in bioengineering communities and those in the biotechnology industry.
合成生物学的一个重要目标是使用标准化和可互换零件来编程细胞行为的合理设计和可预测的合成基因回路实现。但是,与电子数字电路不同,生物回路中的组件与物理绝缘的电线不连接,并且生物信息的流动必须取决于其特定的化学相互作用以避免互动。结果,相同的遗传部分不得在一个集成系统中两次使用,以防止它们之间潜在的意外相互作用。因此,正交零件和模块对于包括许多组件的大基因电路的兼容性和可扩展设计所必需。正交性意味着新添加的零件和模块不应与工程生物系统以及宿主遗传背景中存在的零件和模块不应与存在的零件和模块。到目前为止,大多数构建的基因电路都是小型系统,这些系统是由零件非常有限的昂贵且效率低下的“试用和错误”方法构建的。例如,从第一个3基因拨动开关到迄今为止最大的构建的11基因4输入和逻辑门已经花费了将近12年的时间。这种缓慢背后的一个艰难事实是,活细胞中复杂电路的工程目前受到特征良好和正交(非交叉言论)遗传调节构建块的可用性的限制。因此,迫切需要合成生物学的需求是扩展当前有限的生物学部位工具箱,具有许多功能性正交元素,以扩大我们构建大型和复杂电路的能力。尽管如此,它仍然是一项巨大的基础挑战,以扩大合成生物学工具箱中可用的正交组件的一系列可用正交组件。该项目旨在通过开发两种新颖的可扩展工具来解决这一挑战,以设计一个扩展的多功能正交遗传基础库的库。特别是,我们将建立一个模块化和正交遗传NAND和NOR LOGIC GATES的库。这些是通用的逻辑门,它们的组合可用于完成任何任意的复杂布尔逻辑操作,为蜂窝过程控制提供了强大的可扩展方法。此外,我们将从这些工程逻辑门的不同排列中创建多层遗传程序,以证明在单个单元格中构成高阶信号处理和转录控制功能的潜力。例如,工程遗传程序将用于实现高级逻辑计算设备 - 1位全加法器,以指定的逻辑方式插入三个化学输入以产生两个光学输出。 In addition, we will demonstrate that large complex transcriptional control programs can be implemented in a microbial cell factory to precisely and rapidly tune gene expression profiles within the biosynthesis pathway of a high value chemical (violacein).The engineered scalable tools from this study will increase significantly the number of orthogonal control elements, gates and wires in the limited toolbox of synthetic biology, leading to large-scale complex genetic control programs attainable to程序在细胞中的高级行为。成功的结果将导致生物技术行业预期的许多应用(高收益),并将对研究人员和生物工程社区以及生物技术行业的研究人员带来巨大好处。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Front Cover: Synthetic Biology Enables Programmable Cell-Based Biosensors (ChemPhysChem 2/2020)
封面:合成生物学使可编程的基于细胞的生物传感器成为可能 (ChemPhysChem 2/2020)
- DOI:10.1002/cphc.201901192
- 发表时间:2020
- 期刊:
- 影响因子:2.9
- 作者:Hicks M
- 通讯作者:Hicks M
A Novel Eukaryote-Like CRISPR Activation Tool in Bacteria: Features and Capabilities
- DOI:10.1002/bies.201900252
- 发表时间:2020-04-20
- 期刊:
- 影响因子:4
- 作者:Liu, Yang;Wang, Baojun
- 通讯作者:Wang, Baojun
A systematic approach to inserting split inteins for Boolean logic gate engineering and basal activity reduction.
- DOI:10.1038/s41467-021-22404-9
- 发表时间:2021-04-13
- 期刊:
- 影响因子:16.6
- 作者:Ho TYH;Shao A;Lu Z;Savilahti H;Menolascina F;Wang L;Dalchau N;Wang B
- 通讯作者:Wang B
Engineered CRISPRa enables programmable eukaryote-like gene activation in bacteria
- DOI:10.1038/s41467-019-11479-0
- 发表时间:2019-08-26
- 期刊:
- 影响因子:16.6
- 作者:Liu, Yang;Wan, Xinyi;Wang, Baojun
- 通讯作者:Wang, Baojun
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Baojun Wang其他文献
Insight Into the Effect of CuNi(111) and FeNi(111) Surface Structure and Second Metal Composition on Surface Carbon Elimination by O or OH: A Comparison Study with Ni(111) Surface
深入探讨 CuNi(111) 和 FeNi(111) 表面结构和第二金属成分对 O 或 OH 表面消碳的影响:与 Ni(111) 表面的比较研究
- DOI:
10.1021/acs.jpcc.5b03868 - 发表时间:
2015-06 - 期刊:
- 影响因子:3.7
- 作者:
Riguang Zhang;Xiaoqiang Guo;Baojun Wang;Lixia Ling - 通讯作者:
Lixia Ling
New porcine model for training for laparoscopic ureteral reimplantation with horn of uterus to mimic enlarged ureter.
用于训练腹腔镜输尿管再植入的新猪模型,用子宫角模拟扩大的输尿管。
- DOI:
10.1089/end.2009.0148 - 发表时间:
2010 - 期刊:
- 影响因子:2.7
- 作者:
Xing Ai;Baojun Wang;Zhun Wu;Guo;Zheng;T. Shi;Bin Fu;Hong;Xin Ma;Xu Zhang - 通讯作者:
Xu Zhang
Dual Antiplatelet Therapies and Causes in Minor Stroke or Transient Ischemic Attack: A Prespecified Analysis in the CHANCE-2 Trial
双联抗血小板疗法和轻微中风或短暂性脑缺血发作的原因:CHANCE-2 试验中的预先指定分析
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:8.3
- 作者:
Xuewei Xie;J. Jing;X. Meng;S. Claiborne Johnston;P. Bath;Zixiao Li;Xing;Liping Liu;Yilong Wang;Qin Xu;Anxin Wang;Yong Jiang;Hao Li;Yongjun Wang;Yongjun Wang;S. Johnston;Anding Xu;P. Bath;Qianggang Dong;Hao Li;X. Meng;J. Jing;Xuewei Xie;Jinxi Lin;T. Simon;N. Danchin;H. Zhi;B. Peng;Dongsheng Fan;David Wang;Teddy S. Youn;H. Adams;Siying Niu;Yuesong Pan;Anxin Wang;Yong Jiang;A. Jin;Haibo Wu;Wei Shi;Jianhua Li;Yanxia Wang;Yan Wei;Haichao Liu;Jianhua Zhao;Xinsheng Han;Baoying Sheng;Xiaofan Yang;Ping Jing;Jiechun Chen;Pan Huang;Guofang Chen;Yefang Feng;Li'e Wu;Runxiu Zhu;P. Liu;Liguo Chang;Xia;Xinqiang Wang;Jinguo Zhao;Wei Zhang;Zhigang Cui;Xuemei Wu;Hua Huang;Qiuwu Liu;Xing;Donglin Cheng;Yulan Zhu;Li;Guozhong Li;Xiaoxuan Zhang;Wen;Guo;Haipeng Li;Kegang Deng;Jingyao Liu;Yan;Xiu'e Wei;Dunjing Wang;Juan Feng;Baojun Wang;Yongming Chen;Bing Wu;X. Chai;Fu;Xueli Cai;Hongqin Yang;Yu;Xia Wang;Yumei Wang;Zhimin Shi;Shengli Chen;Yangmei Chen;Lichun Zhou;W. Hong;Lufeng Yin;L. Ren;Jia;Y. Lei;Minghua Wu;Guoyong Zeng;Lingfeng Wu;Ming Cao;Cunju Guo;Honghao Man;Yu Bai;Aimei Wu;Xuerong Huang;Chunhua Zhang;Xiaolin Jiang;Peining Shao;D. Luo;Zhiyou Cai;Yixing Jia;Aijun Ma;Ying Bai;Xuhai Gong;Jirong Liu;Meng Zhang;H. Tan;Y. An;Zhimin Wang;Wei Zhao;Xiangbin Wu;Wenwei Gao;Yueqiang Gao;Xinyi Li;Jin Wu;Feng Wang;Ganqin Du;Kaiyi Wu;H. Wan;Lan Chu;Daojun Hong;H. Cao;Bing Xu;Jie Liu;H. Zhang;Jian Yang;Guiru Zhang;Hong Chen;Jianling Zhang;Xuemei Li;Yuan Zou;Yan Wang;Xia Wei;Jian;Weifeng Chen;Chun;Changbai Sui;Hongyan Li;Hua Zhong;Aisheng Wu;Jin Fan;Qiuhong Ji;Jin;Xueying Shi;Gu Kang;Haiyang Xie;D. Ma;Hongliang Wang;Wei Chen;Peng Shi;Shangguan Wen;Jun Gu;Xiao;Q. Zhan;Xi Han;Hongyuan Cao;Liang Wei;Weifeng Lu;Chunlin Zheng;Chunjie Yang;Min Zhao;Heng Wu;Chunhua Dong;Yongli He;Shufang Yao;Xiangyang Zhu;Zhong Zhao;Min Ye;Guodong Cai;Guangyao Peng;Hongfei Li;Lu Zhang;Shou Zhang;Wei Zhou;Hong Liu;X. Fan;Wei Tan;Renxiang Zhu;Tianhui He;Qi;Lifang Zhang;Jin;Yuqing Liu;Shaohua Su;Li He;Yadong Yu;Zhang Wei;Zhankui Lin;Xue Rong Qiu;Ying Bin Qi;L. Sheng;Shi Zheng Wu;Song Di Wu;Sheng Liang Wu;Ding Qin;Bo Xiao;Kai Wang;Xi Ting Zhang;Jin Jing Pang - 通讯作者:
Jin Jing Pang
Microfluidic Sterilization
微流控灭菌
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:3.2
- 作者:
Jie Huang;Baojun Wang;Wei Wang;Haixia Zhang - 通讯作者:
Haixia Zhang
Syngas Conversion to C2 Oxygenates over Cu/β-Mo2C Catalyst: Probing into the Effect of the Interface between Cu and β-Mo2C on Catalytic Performance
Cu/β-Mo2C 催化剂上合成气转化为 C2 氧气:探讨 Cu 和 β-Mo2C 之间的界面对催化性能的影响
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Riguang Zhang;Cong Wei;Weisheng Guo;Zhiqin Li;Baojun Wang;Lixia Ling;Debao Li - 通讯作者:
Debao Li
Baojun Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Baojun Wang', 18)}}的其他基金
Engineering orthogonal split inteins as scalable tools for synthetic biology and biomanufacturing
将正交分裂内含子工程化为合成生物学和生物制造的可扩展工具
- 批准号:
MR/S018875/1 - 财政年份:2019
- 资助金额:
$ 44.13万 - 项目类别:
Fellowship
相似国自然基金
光触发邻二酮的生物正交合成及其与靶蛋白中精氨酸选择性偶联的生物学应用
- 批准号:22377088
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
结构生物学导向的非核苷类HIV-1逆转录酶抑制剂设计、合成与生物活性研究
- 批准号:22377097
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
大麻二酚在植物底盘细胞的合成生物学研究
- 批准号:82373997
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
具有新作用模式的二价配体型BCL6蛋白降解分子的设计、合成及其生物学评估
- 批准号:22377100
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于合成生物学的工程化外泌体构建及其在阿尔茨海默病核酸治疗的研究
- 批准号:22376006
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Investigating how bHLH circuits integrate signals for cell fate decisions
研究 bHLH 电路如何整合信号以决定细胞命运
- 批准号:
10722452 - 财政年份:2023
- 资助金额:
$ 44.13万 - 项目类别:
Next generation massively multiplexed combinatorial genetic screens
下一代大规模多重组合遗传筛选
- 批准号:
10587354 - 财政年份:2023
- 资助金额:
$ 44.13万 - 项目类别:
Enabling synthetic biology through single cell functional genomics
通过单细胞功能基因组学实现合成生物学
- 批准号:
10556421 - 财政年份:2022
- 资助金额:
$ 44.13万 - 项目类别:
Synthetic toolkit for precision gene expression control and signal processing in mammalian cells
用于哺乳动物细胞中精确基因表达控制和信号处理的合成工具包
- 批准号:
10584605 - 财政年份:2020
- 资助金额:
$ 44.13万 - 项目类别:
Enabling Plant Natural Product Biosynthesis by Debugging Heterologous Protein Expression in Yeast
通过调试酵母中的异源蛋白表达实现植物天然产物的生物合成
- 批准号:
10335983 - 财政年份:2019
- 资助金额:
$ 44.13万 - 项目类别: