A reverse vaccinology approach to a bTB vaccine

bTB 疫苗的逆向疫苗学方法

基本信息

  • 批准号:
    BB/N004698/1
  • 负责人:
  • 金额:
    $ 183.03万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2016
  • 资助国家:
    英国
  • 起止时间:
    2016 至 无数据
  • 项目状态:
    已结题

项目摘要

Bovine tuberculosis, bTB, is the result of the infection of cattle by the bacterium Mycobacterium bovis. The bacterium is distributed widely in nature as it also infects many other wildlife species and as a result of this, wildlife infection acts as a reservoir for the bacterium which periodically get across into domestic cattle. The consequence of this is twofold. First, cattle that are bTB positive must be culled with a knock-on effect on the farmer and his ability to maintain a herd. Second, bTB is a threat for human infection, primarily via the consumption of contaminated milk. Today bTB infection of individuals is extremely rare, but the threat remains and for these reasons bTB infection is unwelcome and needs to be controlled or, preferably, eradicated. Since a historical review in the mid-1990s, the badger has been identified as one of the major routes of transmission of bTB to domestic cattle and this, in turn, has led to attempts to break this transmission route via badger culling. These have met with only limited success and immense public concern leaving the physical breaking of the transmission route mostly unaltered. An alternative approach is to accept that bTB circulates widely in the environment but to prevent cattle infection by previous vaccination. At the present time however an effective vaccine for bTB in cattle is not available and new methods to develop such a vaccine are urgently needed. It is generally accepted that vaccines function by generating an antibody response in the target animal which prevents the bacterium from establishing the initial infection. These antibodies, which are a normal product of the immune system of all mammals, generally bind to the outside of the bacterium and so prevent it from binding to cattle cells, usually the epithelial cells of the lung. It follows that the protective components of bTB, that is, the components that will generate the antibody response that is protective, are to be found on the outside of the bacterium surface. Bacteria have many components on their surface and any, or perhaps a combination of many, of these components, proteins encoded by the bacterium genome, could be essential for the development of effective immunity. However exactly which are required is currently unknown. In this research, we propose to produce all of the surface components of bTB and to test them in batches for their ability to induce an effective immune response. We propose to do this work in cattle so that the response measured to our test vaccines is typical of what will be found if an eventual vaccine is used in typical herds. Our work breaks down into three related components. Firstly, we will identify all of those proteins from the M. bovis bacterium that are to be found on the surface of the organism and produce each of them in a safe and efficient manner. Our initial calculations suggest that several hundred such proteins may be required in order to find the few that are necessary for effective immunity. Secondly, we will use our surface proteins as test vaccines in cattle and to make this process efficient we will carry out this work with mixes of proteins so that the least number of cattle has to be used. Following the immunizations we will take blood samples from the cattle and test them for the ability to prevent M. bovis infection. Finally, we will examine the mechanism of protection and how the individual components so we have identified work together to provide the cattle with an effective barrier of immunity. Our approach is exhaustive but it has the potential to draw a line under the vaccine discovery program for bTB and to identify the best mix of candidates for eventual effective vaccine production.
牛结核病 (bTB) 是牛感染牛分枝杆菌的结果。这种细菌在自然界中分布广泛,因为它也感染许多其他野生动物物种,因此,野生动物感染充当了这种细菌的储存库,定期传播到家牛身上。这样做的后果是双重的。首先,bTB 呈阳性的牛必须被扑杀,这会对农民及其维持牛群的能力产生连锁反应。其次,bTB 是人类感染的威胁,主要是通过食用受污染的牛奶而感染。如今,个体的 bTB 感染极为罕见,但威胁仍然存在,因此 bTB 感染不受欢迎,需要加以控制,最好是根除。自 20 世纪 90 年代中期的历史回顾以来,獾已被确定为 bTB 在家牛传播的主要途径之一,这反过来又导致人们试图通过扑杀獾来打破这一传播途径。这些措施只取得了有限的成功,但引起了公众的广泛关注,使得传输路线的物理破坏基本上没有改变。另一种方法是接受 bTB 在环境中广泛传播,但通过先前的疫苗接种来预防牛感染。然而,目前还没有针对牛的 bTB 有效疫苗,因此迫切需要开发这种疫苗的新方法。人们普遍认为,疫苗通过在目标动物体内产生抗体反应来发挥作用,从而防止细菌建立初始感染。这些抗体是所有哺乳动物免疫系统的正常产物,通常与细菌外部结合,从而阻止其与牛细胞(通常是肺上皮细胞)结合。由此可见,bTB 的保护性成分,即产生保护性抗体反应的成分,位于细菌表面的外部。细菌的表面有许多成分,这些成分中的任何一种或多种的组合,即细菌基因组编码的蛋白质,对于有效免疫的发展可能至关重要。然而,具体需要哪些目前尚不清楚。在这项研究中,我们建议生产 bTB 的所有表面成分,并批量测试它们诱导有效免疫反应的能力。我们建议在牛身上进行这项工作,以便对我们的测试疫苗测量到的反应是在典型牛群中使用最终疫苗时所发现的典型反应。我们的工作分为三个相关的部分。首先,我们将识别来自牛分枝杆菌细菌的所有蛋白质,这些蛋白质存在于生物体表面,并以安全有效的方式生产每种蛋白质。我们的初步计算表明,可能需要数百种这样的蛋白质才能找到有效免疫所必需的少数蛋白质。其次,我们将使用我们的表面蛋白作为牛的测试疫苗,为了使这一过程高效,我们将使用蛋白质混合物进行这项工作,以便使用最少数量的牛。免疫接种后,我们将从牛身上采集血液样本并测试它们预防牛支原体感染的能力。最后,我们将研究保护机制以及我们确定的各个成分如何共同发挥作用,为牛提供有效的免疫屏障。我们的方法是详尽的,但它有可能在 bTB 疫苗发现计划下划清界限,并确定最终有效疫苗生产的最佳候选组合。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ian Jones其他文献

Discovery of 95 PTSD loci provides insight into genetic architecture and neurobiology of trauma and stress-related disorders
95 个 PTSD 位点的发现提供了对创伤和压力相关疾病的遗传结构和神经生物学的深入了解
  • DOI:
    10.1101/2023.08.31.23294915
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Nievergelt;A. Maihofer;Elizabeth G Atkinson;Chia;Karmel W Choi;RI Jonathan;N. Daskalakis;L. Duncan;R. Polimanti;Cindy Aaronson;A. Amstadter;Soren B Andersen;O. Andreassen;P. Arbisi;A. Ashley;Bryn Austin;E. Avdibegović;D. Babic;S. Bacanu;D. Baker;Anthony K. Batzler;J. Beckham;S. Belangero;C. Benjet;C. Bergner;L. Bierer;Joanna M. Biernacka;L. Bierut;J. Bisson;M. Boks;Elizabeth A. Bolger;Amber Brandolino;G. Breen;R. Bressan;Richard A. Bryant;A. Bustamante;J. Bybjerg;Marie Bækvad;A. Børglum;S. Børte;L. Cahn;Joseph R. Calabrese;J. Caldas;Chris Chatzinakos;Sheraz Y. Cheema;S. Clouston;L. Colodro;B. Coombes;C. Cruz;A. Dale;S. Dalvie;Lea K. Davis;J. Deckert;D. Delahanty;Michelle F. Dennis;T. deRoon;F. Désarnaud;Christopher P. DiPietro;S. Disner;A. Docherty;K. Domschke;G. Dyb;A. Kulenović;H. Edenberg;Alexandra Evans;Chiara Fabbri;N. Fani;L. Farrer;A. Feder;N. Feeny;J. Flory;David Forbes;C. Franz;S. Galea;M. Garrett;B. Gelaye;J. Gelernter;E. Geuze;Charles F. Gillespie;Aferdita Goçi;Slavina Goleva;Scott D. Gordon;L. Grasser;C. Guindalini;Magali Haas;S. Hagenaars;Mike Hauser;A. Heath;MJ Sian;Hemmings;V. Hesselbrock;I. Hickie;Kelleigh Hogan;D. Hougaard;Hailiang Huang;L. Huckins;K. Hveem;M. Jakovljevič;A. Javanbakht;Gregory D Jenkins;Jessica Johnson;Ian Jones;T. Jovanović;Karen;M. Kaufman;J. Kennedy;R. Kessler;Alaptagin Khan;N. Kimbrel;A. King;N. Koen;Roman Kotov;H. Kranzler;Kristi Krebs;W. Kremen;Pei;B. Lawford;L. Lebois;K. Lehto;D. Levey;Catrin E Lewis;Israel Liberzon;S. Linnstaedt;M. Logue;A. Lori;Yi Lu;B. Luft;Michelle K. Lupton;J. Luykx;I. Makotkine;J. Maples;S. Marchese;Charles Marmar;Nicholas G. Martin;G. Martinez;K. McAloney;Alexander McFarlane;Katie A McLaughlin;S. Mclean;S. Medland;D. Mehta;Jacquelyn Meyers;V. Michopoulos;Elizabeth A Mikita;L. Milani;W. Milberg;Mark W. Miller;R. Morey;C. P. Morris;O. Mors;P. Mortensen;M. Mufford;E. Nelson;M. Nordentoft;S. Norman;N. Nugent;M. O'Donnell;H. Orcutt;P. Pan;M. Panizzon;G. Pathak;Edward S Peters;Alan L. Peterson;Matthew Peverill;R. Pietrzak;Melissa A. Polusny;B. Porjesz;A. Powers;Xue J Qin;A. Ratanatharathorn;V. Risbrough;A. Roberts;B. Rothbaum;Alex O. Rothbaum;P. Roy;K. Ruggiero;A. Rung;H. Runz;B. Rutten;Stacey Subbie;G. Salum;Laura A Sampson;S. Sanchez;Marcos L. Santoro;C. Seah;S. Seedat;J. Seng;A. Shabalin;Christina M. Sheerin;D. Silove;Alicia K. Smith;J. Smoller;S. Sponheim;Dan J Stein;S. Stensland;Jennifer S Stevens;J. Sumner;Martin H. Teicher;Wesley K. Thompson;A. Tiwari;E. Trapido;M. Uddin;R. Ursano;M. Zervas;Hongyu Zhao;L. Zoellner;J. Zwart;M. Stein;K. Ressler;K. Koenen
  • 通讯作者:
    K. Koenen
Key subphenotypes of bipolar disorder are differentially associated with polygenic liabilities for bipolar disorder, schizophrenia, and major depressive disorder.
双相情感障碍的关键亚表型与双相情感障碍、精神分裂症和重度抑郁症的多基因倾向存在差异相关。
  • DOI:
    10.1038/s41380-024-02448-1
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    11
  • 作者:
    Jie Song;L. Jonsson;Yi Lu;Sarah E. Bergen;Robert Karlsson;E. Smedler;K. Gordon;Ian Jones;Lisa Jones;N. Craddock;P. Sullivan;P. Lichtenstein;A. Di Florio;M. Landén
  • 通讯作者:
    M. Landén
A synthetic peptide defines a serologic IgA response to a human papillomavirus-encoded nuclear antigen expressed in virus-carrying cervical neoplasia.
合成肽定义了对携带病毒的宫颈肿瘤中表达的人乳头瘤病毒编码核抗原的血清学 IgA 反应。
ASSESSING MATHEMATICAL PROBLEM SOLVING USING COMPARATIVE JUDGEMENT
使用比较判断评估数学问题的解决能力
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ian Jones;M. Swan;A. Pollitt
  • 通讯作者:
    A. Pollitt
Developing an injectable co-formulation of two antidiabetic drugs: excipient impact on peptide aggregation and pharmacokinetic properties.
开发两种抗糖尿病药物的注射复合制剂:赋形剂对肽聚集和药代动力学特性的影响。
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    5.8
  • 作者:
    Anne;Sophie Houvenagel;A. Broo;Ian Jones;Joanne Goodman;Dominic J. Corkill;Jonathan A. Rose;S. Coward;Anna Sandinge;Marcella Petrone;L. Jermutus;Ana L. Gomes dos Santos
  • 通讯作者:
    Ana L. Gomes dos Santos

Ian Jones的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ian Jones', 18)}}的其他基金

Evaluation of M. bovis antigens in cattle in India for diagnostic and vaccine potential
评估印度牛的牛支原体抗原的诊断和疫苗潜力
  • 批准号:
    BB/V018132/1
  • 财政年份:
    2022
  • 资助金额:
    $ 183.03万
  • 项目类别:
    Research Grant
WISERD Civil Society: Changing perspectives on Civic Stratification and Civil Repair
WISERD 公民社会:改变对公民分层和土木修复的看法
  • 批准号:
    ES/S012435/1
  • 财政年份:
    2019
  • 资助金额:
    $ 183.03万
  • 项目类别:
    Research Grant
WISERD/Civil Society
WISERD/民间社会
  • 批准号:
    ES/L009099/1
  • 财政年份:
    2014
  • 资助金额:
    $ 183.03万
  • 项目类别:
    Research Grant
The identification of the disulfide bonds in HIV gp120 whose reduction is required for cell entry and their manipulation for immunogen design
HIV gp120 中二硫键的鉴定(其还原是细胞进入所需的)及其用于免疫原设计的操作
  • 批准号:
    MR/J008796/1
  • 财政年份:
    2012
  • 资助金额:
    $ 183.03万
  • 项目类别:
    Research Grant
Connectivity, place and elective belonging: community and later life
连通性、地点和选择性归属:社区和晚年生活
  • 批准号:
    AH/J501642/1
  • 财政年份:
    2011
  • 资助金额:
    $ 183.03万
  • 项目类别:
    Research Grant
Human Enterovirus 71 empty capsids produced by baculovirus expression as vaccines
杆状病毒表达产生的人肠道病毒 71 空衣壳作为疫苗
  • 批准号:
    G1000769/1
  • 财政年份:
    2011
  • 资助金额:
    $ 183.03万
  • 项目类别:
    Research Grant
A United Kingdom Lake Ecological Observatory Network
英国湖泊生态观测站网络
  • 批准号:
    NE/I007407/1
  • 财政年份:
    2011
  • 资助金额:
    $ 183.03万
  • 项目类别:
    Research Grant
Asymptotic and numerical modelling of faults and thermal striping in materials with a micro-structure (linked proposal with I.S. Jones, LJMU)
具有微结构的材料中的故障和热条纹的渐近数值模拟(与 LJMU 的 I.S. Jones 的相关提案)
  • 批准号:
    EP/H018239/1
  • 财政年份:
    2010
  • 资助金额:
    $ 183.03万
  • 项目类别:
    Research Grant
A synthetic & recombinant approach to the production and characterisation of IAPV an associated agent of honey bee Colony Collapse Disorder
一种合成的
  • 批准号:
    BB/G02040X/1
  • 财政年份:
    2009
  • 资助金额:
    $ 183.03万
  • 项目类别:
    Research Grant
Effective Structural Unit Size in Polycrystals: Formation, Quantification and Micromechanical Behaviour
多晶的有效结构单元尺寸:形成、定量和微机械行为
  • 批准号:
    EP/E044514/1
  • 财政年份:
    2008
  • 资助金额:
    $ 183.03万
  • 项目类别:
    Research Grant

相似国自然基金

信息经济学视角下的疫苗接种激励政策研究——动态群体博弈和最优实验问题
  • 批准号:
    72303194
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于不同纳米颗粒递送系统的C型产气荚膜梭菌毒素表位肽疫苗的设计及免疫学评价
  • 批准号:
    32360882
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
基于单细胞多组学技术探究新冠灭活疫苗应答个体差异的分子机制
  • 批准号:
    32371000
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
大数据驱动的疫苗上市后安全性主动监测流行病学方法研究
  • 批准号:
    82330107
  • 批准年份:
    2023
  • 资助金额:
    220 万元
  • 项目类别:
    重点项目
新型冠状病毒肺炎疫苗异源加强接种的免疫增强效应机制学研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Identification of the non-proteolytic mechanism of NLRP1 activation
NLRP1 激活的非蛋白水解机制的鉴定
  • 批准号:
    9234453
  • 财政年份:
    2016
  • 资助金额:
    $ 183.03万
  • 项目类别:
A reverse vaccinology approach to developing a vaccine for bovine trichomoniasis
开发牛滴虫病疫苗的逆向疫苗学方法
  • 批准号:
    1797320
  • 财政年份:
    2016
  • 资助金额:
    $ 183.03万
  • 项目类别:
    Studentship
A pan-genome reverse vaccinology approach to disease prevention in farmed fish
预防养殖鱼类疾病的全基因组逆向疫苗学方法
  • 批准号:
    LP130100242
  • 财政年份:
    2013
  • 资助金额:
    $ 183.03万
  • 项目类别:
    Linkage Projects
Reverse vaccinology, a genomics approach to vaccine development for A. pleuropneumoniae
逆向疫苗学,一种胸膜肺炎放线菌疫苗开发的基因组学方法
  • 批准号:
    306730-2004
  • 财政年份:
    2006
  • 资助金额:
    $ 183.03万
  • 项目类别:
    Strategic Projects - Group
Reverse vaccinology, a genomics approach to vaccine development for A. pleuropneumoniae
逆向疫苗学,一种胸膜肺炎放线菌疫苗开发的基因组学方法
  • 批准号:
    306730-2004
  • 财政年份:
    2005
  • 资助金额:
    $ 183.03万
  • 项目类别:
    Strategic Projects - Group
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了