The Cellular Control of Corneal Development and Transparency and Generation of Biomimetic Corneal Tissue.

角膜发育和透明度的细胞控制以及仿生角膜组织的生成。

基本信息

  • 批准号:
    BB/M025349/1
  • 负责人:
  • 金额:
    $ 98.09万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2015
  • 资助国家:
    英国
  • 起止时间:
    2015 至 无数据
  • 项目状态:
    已结题

项目摘要

The cornea is the clear tissue at the front of the eye, which transmits light and focuses it sharply onto the retina. Accordingly, it is absolutely essential for vision. Composed mostly of collagen, the cornea is not unlike other collagen-rich tissues, such as tendons, cartilages, intervertebral discs, or even the sclera; the "white of the eye". But what makes the cornea optically clear is the exquisite way in which the collagen is structured.Collagen in the human body exists predominantly in the form of long fibres, which are very strong along their axes, and can be thought of as having mechanical properties rather like ropes on sailing ships or steel cables on suspension bridges. The organisation of collagen fibres in different tissues is contingent on the tissue's function, and the predominant requirement is usually mechanical. The cornea is unique in this regard because as well as the need to fulfil mechanical requirements, it needs to be transparent.The bulk of the cornea is made up of cells, known as keratocytes, and collagen. Most collagen exists in the form of very long and very thin fibres, or fibrils as they are called in the cornea because they are so thin. Remarkably, and unlike all the other collagen-rich tissues in the body, collagen fibrils in cornea are all of exactly the same diameter and are arranged into a near-perfect, hexagonal-type lattice. It is this precise structural arrangement of collagen which gives the cornea its transparency. But, how does it arise?Keratocytes in the cornea synthesise and deposit collagen. So, presumably these cells must be at least partly responsible for the way in which the collagen fibrils are laid down and arranged. We will use pioneering microscopic approaches across a wide range of magnifications, using laser and electron imaging technologies and working with scientists in the University of California, to study corneas from developing chicks in fertilised hen eggs. Our aim is to understand precisely how cells in the developing cornea interact with each other to make such a beautifully structured tissue as a transparent cornea (the basis of corneal transparency in the chick is the same as that in humans). Recently, we pioneered the use of three-dimensional volume electron microscopy for the study of cornea, and discovered that cells in the developing chick cornea all have highly extended, but thin, cell processes. This showed that the cells themselves occupy a volume of the cornea which is much larger than previously believed. Based on this discovery, our hypothesis is that cells in the developing cornea form an extended network in which they communicate with each other, and that, as a group, they have the innate ability to synthesise incredibly thin collagen fibrils and deposit them into a precise lattice-like arrangement to meet the needs of transparency. To test this hypothesis we will study corneas from the very earliest stages of development, which have never before been examined in three dimensions at such high magnifications. New methodologies for the mathematical modelling of corneal light transmission will be applied to this data to ascertain the key structural requirements for corneal transparency. We will also investigate the cellular contribution to corneal transparency, both by mathematical modelling and by direct measurement of light scattering.Finally, we will interfere with cell-communication pathways in corneal keratocytes, extracted from developing chick corneas and grown in the lab, to pinpoint what molecular mechanisms they use to communicate. These experiments and analyses, using a new way of growing cells in a three-dimensional environment, which we successfully developed to encourage tendon cells to synthesise aligned collagen fibres, will provide great insights for the field of corneal tissue engineering to help inform the intelligent design of the next generation of bioengineered corneal constructs.
角膜是眼前的透明组织,它会传递光线并将其急切地聚焦到视网膜上。因此,这对于视觉绝对是必不可少的。角膜主要由胶原蛋白组成,与其他富含胶原蛋白的组织,例如肌腱,软骨,椎间盘甚至巩膜不同。 “眼睛的白色”。但是,使角膜在光学上清除的是胶原蛋白结构的精美方法。人体中的胶原蛋白主要以长纤维的形式存在,它们沿轴沿其轴非常强,并且可以认为是具有机械性能,就像在悬架上具有帆船或钢电缆上的绳索一样。不同组织中胶原蛋白纤维的组织取决于组织的功能,并且主要的要求通常是机械的。角膜在这方面是独一无二的,因为以及满足机械需求的需求,它需要透明。大部分角膜是由细胞组成的,被称​​为角膜细胞和胶原蛋白。大多数胶原蛋白以非常长且非常薄的纤维形式存在,或者是在角膜中称为纤维的原纤维,因为它们是如此薄。值得注意的是,与体内所有其他富含胶原蛋白的组织不同,角膜中的胶原蛋白原纤维的直径完全相同,并排列成近乎完美的六边形型晶格。正是这种胶原蛋白的精确结构排列使角膜透明。但是,它是如何产生的?角膜合成和沉积胶原蛋白的角膜细胞。因此,大概这些细胞至少必须部分负责胶原蛋白原纤维的放置和排列的方式。我们将使用激光和电子成像技术并与加利福尼亚大学的科学家合作,在广泛的宏伟速度中使用开创性的显微镜方法研究,从受精卵中发育的小鸡中研究角膜。我们的目的是精确地了解发育中的角膜中的细胞如何相互相互作用,以使结构精美的组织像透明的角膜(雏鸡角膜透明度的基础与人类中的角膜透明度相同)。最近,我们开创了使用三维体积电子显微镜进行角膜研究的开创性,并发现发育中的鸡角膜中的细胞都具有高度扩展但薄的细胞过程。这表明细胞本身占据了一定数量的角膜,这比以前认为的要大得多。基于这一发现,我们的假设是,发育中的角膜中的细胞形成了一个扩展的网络,它们相互通信,并且作为一个群体,它们具有固有的能力,可以合成令人难以置信的薄胶原纤维纤维,并将它们沉积到精确的晶格样排列中,以满足透明度的需求。为了检验这一假设,我们将从最早的发育阶段研究角膜,在这种高宏伟的情况下,这些阶段从未在三个维度上进行过研究。角膜光传输的数学建模的新方法将应用于此数据,以确定角膜透明度的关键结构要求。我们还将通过数学建模和直接测量光散射来研究细胞对角膜透明度的贡献。从本文中,我们将干扰角膜角化细胞中的细胞通信途径,从发育中的雏鸡角膜中提取并在实验室中生长,以指出它们用于传达的分子机制。这些实验和分析使用一种在三维环境中生长细胞的新方法,我们成功地开发了肌腱细胞综合对齐的胶原蛋白纤维,将为角膜组织工程领域提供很好的见解,以帮助告知下一代生物连接的角膜结构的智能设计。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Surgical Cryoprobe for Targeted Transcorneal Freezing and Endothelial Cell Removal.
  • DOI:
    10.1155/2017/5614089
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Akhbanbetova A;Nakano S;Littlechild SL;Young RD;Zvirgzdina M;Fullwood NJ;Weston I;Weston P;Kinoshita S;Okumura N;Koizumi N;Quantock AJ
  • 通讯作者:
    Quantock AJ
CD200 facilitates the isolation of corneal epithelial cells derived from human pluripotent stem cells.
  • DOI:
    10.1038/s41598-018-34845-2
  • 发表时间:
    2018-11-08
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Hayashi R;Ishikawa Y;Katayama T;Quantock AJ;Nishida K
  • 通讯作者:
    Nishida K
Fabrication of a Corneal Epithelial Cell Sheet from Human Pluripotent Stem Cells by a Method Based on Spontaneous Ocular Cell Differentiation
基于眼细胞自发分化的方法从人多能干细胞制备角膜上皮细胞片
  • DOI:
    10.1038/protex.2016.009
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hayashi R
  • 通讯作者:
    Hayashi R
Chondroitin Sulphate/Dermatan Sulphate Proteoglycans: Potential Regulators of Corneal Stem/Progenitor Cell Phenotype In Vitro.
  • DOI:
    10.3390/ijms24032095
  • 发表时间:
    2023-01-20
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Bains, Kiranjit K.;Ashworth, Sean;Koudouna, Elena;Young, Robert D.;Hughes, Clare E.;Quantock, Andrew J.
  • 通讯作者:
    Quantock, Andrew J.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew Quantock其他文献

選択的Rhoキナーゼ阻害剤の角膜実質創傷治癒への影響
选择性Rho激酶抑制剂对角膜基质伤口愈合的影响
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    山本真弓;奥村直毅;上野盛夫;坂本雄二;木下茂;Robert Young;Andrew Quantock;小泉範子
  • 通讯作者:
    小泉範子
角膜内皮の小胞体ストレス応答におけるmitochondria-associated ER membranesの関与
线粒体相关内质网膜参与角膜内皮内质网应激反应
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    松本紗季;奥村直毅;奥田浩和;Robert Young;Andrew Quantock;小泉範子
  • 通讯作者:
    小泉範子

Andrew Quantock的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrew Quantock', 18)}}的其他基金

Nanoscale Structural Characterisations of Ocular Tissues Derived from Human iPS Cells
人类 iPS 细胞来源的眼组织的纳米级结构表征
  • 批准号:
    BB/X000966/1
  • 财政年份:
    2023
  • 资助金额:
    $ 98.09万
  • 项目类别:
    Research Grant
The Genomic Basis of Human Induced Pluripotent Stem (iPS) Cell Differentiation into Eye-Like Tissues.
人类诱导多能干细胞 (iPS) 分化为类眼组织的基因组基础。
  • 批准号:
    BB/S015981/1
  • 财政年份:
    2019
  • 资助金额:
    $ 98.09万
  • 项目类别:
    Research Grant
Targeted Drug Delivery to the Cornea of the Eye Via Medicated Contact Lenses and Mucoadhesive Thin Films
通过药用隐形眼镜和粘膜粘附薄膜将靶向药物递送至眼角膜
  • 批准号:
    BB/S004874/1
  • 财政年份:
    2019
  • 资助金额:
    $ 98.09万
  • 项目类别:
    Research Grant
A mechanistic understanding of corneal pathobiology and the development of therapeutic strategies for the treatment of connective tissue disorders
对角膜病理学的机制理解和结缔组织疾病治疗策略的开发
  • 批准号:
    MR/S037829/1
  • 财政年份:
    2019
  • 资助金额:
    $ 98.09万
  • 项目类别:
    Research Grant
Japan Partnering Award: The Generation of Eye Tissues from Human Induced Pluripotent Stem (iPS) Cells.
日本合作奖:利用人类诱导多能干细胞 (iPS) 生成眼组织。
  • 批准号:
    BB/R021244/1
  • 财政年份:
    2018
  • 资助金额:
    $ 98.09万
  • 项目类别:
    Research Grant
The Development of Eye Tissues via Human Induced Pluripotent Stem (iPS) Cells.
通过人类诱导多能干 (iPS) 细胞发育眼组织。
  • 批准号:
    BB/P017843/1
  • 财政年份:
    2018
  • 资助金额:
    $ 98.09万
  • 项目类别:
    Research Grant
Targeted Drug Delivery to the Cornea of the Eye Via Thin-Film Slow Release Technology.
通过薄膜缓释技术将靶向药物输送至眼角膜。
  • 批准号:
    BB/N022106/1
  • 财政年份:
    2017
  • 资助金额:
    $ 98.09万
  • 项目类别:
    Research Grant
A Freedom to Operate Proposal to Research Targeted Drug Delivery to the Cornea of the Eye Via Thin-Film Slow Release Technology.
自由实施研究通过薄膜缓释技术将靶向药物输送到眼角膜的提案。
  • 批准号:
    BB/P011969/1
  • 财政年份:
    2016
  • 资助金额:
    $ 98.09万
  • 项目类别:
    Research Grant
A Physical Characterisation of Assembly Mechanisms and Light Transmission in Cornea.
角膜组装机制和光传输的物理表征。
  • 批准号:
    EP/F034970/1
  • 财政年份:
    2008
  • 资助金额:
    $ 98.09万
  • 项目类别:
    Research Grant

相似国自然基金

超薄PdM/Fe3O4(M = Cr, Mo, W)异质纳米片的可控制备及燃料电池膜电极性能调控
  • 批准号:
    52303361
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
涡喷动力智能飞行机甲人机共融协同控制方法研究
  • 批准号:
    62303244
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于输出反馈的有限时间主动一体化抗干扰控制理论及应用
  • 批准号:
    62303148
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
用于急性出血控制的硅酸钙复合海绵的构建及其促凝血性能和机制研究
  • 批准号:
    32301097
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
多源信息融合下港口船舶岸电容量配置与运行控制策略
  • 批准号:
    52302393
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Glaucoma Drainage Device and Endothelial Cell Density Loss Compare (DECLARE) Trial
青光眼引流装置和内皮细胞密度损失比较(DECLARE)试验
  • 批准号:
    10554765
  • 财政年份:
    2023
  • 资助金额:
    $ 98.09万
  • 项目类别:
Integral analysis of the cellular microenvironment aiming in vivo control of corneal endothelial cell fate
旨在体内控制角膜内皮细胞命运的细胞微环境的整体分析
  • 批准号:
    22K09772
  • 财政年份:
    2022
  • 资助金额:
    $ 98.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Smartphone-based community screening for eye disease in rural India
印度农村地区基于智能手机的眼病社区筛查
  • 批准号:
    10704721
  • 财政年份:
    2022
  • 资助金额:
    $ 98.09万
  • 项目类别:
Smartphone-based community screening for eye disease in rural India
印度农村地区基于智能手机的眼病社区筛查
  • 批准号:
    10527058
  • 财政年份:
    2022
  • 资助金额:
    $ 98.09万
  • 项目类别:
Lacritin Regulation of Homeostasis and Ocular Surface Health
泪泌素对体内平衡和眼表健康的调节
  • 批准号:
    10477335
  • 财政年份:
    2021
  • 资助金额:
    $ 98.09万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了