How early eye circuits process and present visual features

早期眼回路如何处理和呈现视觉特征

基本信息

  • 批准号:
    BB/M009564/1
  • 负责人:
  • 金额:
    $ 115.94万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2015
  • 资助国家:
    英国
  • 起止时间:
    2015 至 无数据
  • 项目状态:
    已结题

项目摘要

From humans to fruit flies, the ability of resolve individual objects by their features and to link these features to a coherent precept of the world is crucial for visual behaviours and fitness of seeing animals. But it remains a mystery how information processing within the networks of nerve cells in the eyes make object recognition possible.Eye circuits process and represent visual information as patterns. Some of these patterns are complex and allow the brain, for example, to recognize objects from different perspectives. It is not understood how the eyes/brains represent visual information as patterns, recognises those patterns, and then solves problems. However, it is likely that the underlying processes occur at the level of circuits, where neurons and their connections interact dynamically. These important questions have direct implications for how we understand neural mechanisms for object/pattern recognition, with obvious links to artificial visual systems, machine-learning and robotics. Yet remarkably, they can be particularly well studied in the simple eyes and brain of fruit fly, Drosophila. While fly and human eyes have a very different architecture, both eyes must somehow extract object features from visual scenes, and to link these neural representations to some form of internal activity "maps" to execute goal-oriented behaviours. Importantly, Drosophila has a hard-wired circuitry of known layout, genetic toolboxes for modifying connectivity, and allows monitoring of neural activity with scalable resolution during visual stimulation/behaviour. This would not be possible in human eyes/brain. We now wish to utilise new wiring diagrams, genetic, electrophysiological and optical imaging tools available for Drosophila and state of the art mathematical analysis to study neural mechanisms of object representation at the level of its eye microcircuits. Specifically, we are interested in uncovering what kind of processing strategies early visual circuits use to extract object features; how and why eye circuits separate and integrate the representations of object colour and shape ('what' information) from that of its location and motion ('where' information), and how these representations adapt when the same object is seen in different lighting conditions/backgrounds. This research plan aims to start identifying and quantifying the fundamental early neural mechanisms for object perception that are probably used in the nervous systems of seeing animals across the animal kingdom. The knowledge we gain from these studies will not only advance our understanding of how animals see but, because the basic underlying neural connectivity and synaptic mechanisms are so widely found in other sensory systems and in our brain, will provide new insight into many other, often clinically important processes in the nervous system. Thus, our results should be off great interest to academics and industry, seeking to understand biologically-inspired design for machine sensing; principles which are usually more robust, cheaper, smaller and more energy-efficient than conventional engineering concepts. In long term, the new knowledge from our experiments and modelling may even help to manufacture novel adaptive biochips and test their performance as sensory implants.
从人类到果蝇,通过特征解析单个物体并将这些特征与世界的连贯规则联系起来的能力对于视觉行为和观察动物的适应性至关重要。但眼睛神经细胞网络内的信息处理如何使物体识别成为可能仍然是一个谜。眼电路处理视觉信息并将其表示为模式。其中一些模式很复杂,例如可以让大脑从不同的角度识别物体。目前尚不清楚眼睛/大脑如何将视觉信息表示为模式,识别这些模式,然后解决问题。然而,潜在的过程很可能发生在神经元及其连接动态相互作用的电路层面。这些重要问题对我们如何理解对象/模式识别的神经机制有直接影响,与人工视觉系统、机器学习和机器人技术有明显的联系。然而值得注意的是,它们可以在果蝇的简单眼睛和大脑中得到特别好的研究。虽然果蝇和人眼的架构非常不同,但双眼必须以某种方式从视觉场景中提取物体特征,并将这些神经表征与某种形式的内部活动“地图”联系起来,以执行面向目标的行为。重要的是,果蝇具有已知布局的硬连线电路、用于修改连接的遗传工具箱,并允许在视觉刺激/行为期间以可扩展的分辨率监测神经活动。这在人眼/大脑中是不可能的。我们现在希望利用可用于果蝇的新接线图、遗传、电生理和光学成像工具以及最先进的数学分析来研究其眼睛微电路水平上的物体表征的神经机制。具体来说,我们有兴趣揭示早期视觉电路使用什么样的处理策略来提取物体特征;眼电路如何以及为何将物体颜色和形状(“什么”信息)的表征与其位置和运动(“何处”信息)的表征分离和整合,以及在不同照明条件下看到同一物体时这些表征如何适应/背景。该研究计划旨在开始识别和量化物体感知的基本早期神经机制,这些机制可能用于观察整个动物界动物的神经系统。我们从这些研究中获得的知识不仅将增进我们对动物如何视觉的理解,而且因为基本的神经连接和突触机制在其他感觉系统和我们的大脑中广泛存在,将为许多其他通常的现象提供新的见解。神经系统中临床上重要的过程。因此,我们的结果应该引起学术界和工业界的极大兴趣,寻求理解机器传感的生物启发设计;这些原则通常比传统的工程概念更强大、更便宜、更小、更节能。从长远来看,我们的实验和建模中获得的新知识甚至可能有助于制造新型自适应生物芯片并测试其作为感觉植入物的性能。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Microsaccadic sampling of moving image information provides Drosophila hyperacute vision.
  • DOI:
    10.7554/elife.26117
  • 发表时间:
    2017-09-05
  • 期刊:
  • 影响因子:
    7.7
  • 作者:
    Juusola M;Dau A;Song Z;Solanki N;Rien D;Jaciuch D;Dongre SA;Blanchard F;de Polavieja GG;Hardie RC;Takalo J
  • 通讯作者:
    Takalo J
Selective human tau protein expression in different clock circuits of the Drosophila brain disrupts different aspects of sleep and circadian rhythms
  • DOI:
    10.1101/2020.12.14.422675
  • 发表时间:
    2020-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Jaciuch;J. Munns;S. Chawla;S. Davis;M. Juusola
  • 通讯作者:
    David Jaciuch;J. Munns;S. Chawla;S. Davis;M. Juusola
Theory of Morphodynamic Information Processing: Linking Sensing to Behaviour
  • DOI:
    10.20944/preprints202308.1210.v1
  • 发表时间:
    2023-08-16
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Juusola,Mikko;Takalo,Jouni;Chittka,Lars
  • 通讯作者:
    Chittka,Lars
Encyclopedia of Computational Neuroscience
计算神经科学百科全书
  • DOI:
    10.1007/978-1-4614-6675-8_333
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Juusola M
  • 通讯作者:
    Juusola M
How a fly photoreceptor samples light information in time.
  • DOI:
    10.1113/jp273645
  • 发表时间:
    2017-08-15
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Juusola M;Song Z
  • 通讯作者:
    Song Z
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mikko Ilmari Juusola其他文献

Mikko Ilmari Juusola的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mikko Ilmari Juusola', 18)}}的其他基金

2022BBSRC-NSF/BIO Generating New Network Analysis Tools for Elucidating the Functional Logic of 3D Vision Circuits of the Drosophila Brain
2022BBSRC-NSF/BIO 生成新的网络分析工具来阐明果蝇大脑 3D 视觉电路的功能逻辑
  • 批准号:
    BB/Y000234/1
  • 财政年份:
    2024
  • 资助金额:
    $ 115.94万
  • 项目类别:
    Research Grant
New insight into functional eye evolution: seeing the world through moving photoreceptors.
对眼睛功能进化的新见解:通过移动的感光器看世界。
  • 批准号:
    BB/X006247/1
  • 财政年份:
    2023
  • 资助金额:
    $ 115.94万
  • 项目类别:
    Research Grant
Insect-inspired depth perception
受昆虫启发的深度知觉
  • 批准号:
    EP/X019705/1
  • 财政年份:
    2023
  • 资助金额:
    $ 115.94万
  • 项目类别:
    Research Grant
How does the Drosophila brain compute and see visual motion?
果蝇大脑如何计算和观察视觉运动?
  • 批准号:
    BB/F012071/1
  • 财政年份:
    2008
  • 资助金额:
    $ 115.94万
  • 项目类别:
    Research Grant
The effect of feedback connections on information processing at the first visual synapse of Drosophila and on the animal behaviour
反馈连接对果蝇第一视觉突触信息处理和动物行为的影响
  • 批准号:
    BB/D001900/1
  • 财政年份:
    2006
  • 资助金额:
    $ 115.94万
  • 项目类别:
    Research Grant

相似国自然基金

氟-18标记咪唑啉I2受体显像剂的研究及其在AD早期诊断中的应用探索
  • 批准号:
    22306014
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
抵挡汤早期干预抑制外膜滋养血管新生减轻血管钙化延缓2型糖尿病大血管病变发生的作用机制研究
  • 批准号:
    82374247
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
多时序CT联合多区域数字病理早期预测胃癌新辅助化疗抵抗的研究
  • 批准号:
    82360345
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
MAPK4通过促进SHIP-1磷酸化负调控B细胞早期激活和功能的机制研究
  • 批准号:
    32360184
  • 批准年份:
    2023
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
早期环境暴露对儿童哮喘免疫保护的动物实验和机制研究
  • 批准号:
    82300031
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Vector engineering for non-viral delivery of large genomic DNA to the RPE
用于将大基因组 DNA 非病毒传递至 RPE 的载体工程
  • 批准号:
    10667049
  • 财政年份:
    2023
  • 资助金额:
    $ 115.94万
  • 项目类别:
PRECARE is an innovative and integrated platform designed to improve the developmental surveillance of the baby.
PRECARE 是一个创新的集成平台,旨在改善婴儿的发育监测。
  • 批准号:
    10603833
  • 财政年份:
    2023
  • 资助金额:
    $ 115.94万
  • 项目类别:
Genome Editing Therapy for Usher Syndrome Type 3
针对 3 型亚瑟综合症的基因组编辑疗法
  • 批准号:
    10759804
  • 财政年份:
    2023
  • 资助金额:
    $ 115.94万
  • 项目类别:
Leveraging CLEERE axial length data to improve myopia treatment
利用 CLEERE 眼轴长度数据改善近视治疗
  • 批准号:
    10725732
  • 财政年份:
    2023
  • 资助金额:
    $ 115.94万
  • 项目类别:
Dissecting out differential molecular phenotypes across Lysine(K) AcetylTransferase mutations in mouse development
剖析小鼠发育过程中赖氨酸(K)乙酰转移酶突变的差异分子表型
  • 批准号:
    10727966
  • 财政年份:
    2023
  • 资助金额:
    $ 115.94万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了