Tissue specific aquaporin expression for seedling water stress resistance
组织特异性水通道蛋白表达用于幼苗抗水胁迫
基本信息
- 批准号:BB/J017582/1
- 负责人:
- 金额:$ 55.94万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2012
- 资助国家:英国
- 起止时间:2012 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This plant science project combines cell biology and plant physiology to understand how seeds take up water during germination and post-germination seedling growth and how we can control this process to develop crops that can germinate and establish in water stress conditions. Rapid plant tissue expansion after seed germination is crucial for crop establishment and plant uniformity and it directly impacts on quality and yield at the end of the crop cycle. For these reasons early vigour is an important target for crop improvement. Most cells (including seed cells) take up water through protein water channels called aquaporins (AQP). While a lot is known about AQP structure and function in plant roots and leaves, very little is known about their role in seed germination and post-germination seedling growth. Our project directly addresses this question. AQP exist on different cellular membranes and water intake is usually controlled by AQP on the outer cell membrane (the plasma membrane). Remarkably, we have found that in seeds the AQP that are normally present on the plasma membrane are NOT produced until AFTER the seed has germinated. So what is controlling water entry during germination? We have discovered that AQP that normally reside on the membrane of the vacuole (the tonoplast) are also found at the plasma membrane during seed maturation and germination. Therefore it seems that seeds have a unique way of regulating water intake by sending tonoplast AQP to the plasma membrane.We have also discovered that plants modified to produce very high amounts of seed AQP are able to germinate and grow in conditions of water stress, performing significantly better than wild-type plants. Therefore we hypothesise that seed AQP are major controllers of water flow in seeds and early seedling growth that can be used to generate plants that cope better with drought conditions.Our project aims at understanding the role of AQP by studying the way the tonoplast AQP are targeted to the plasma membrane. We also propose to manipulate both the amount and type of AQP present on the seed cells' plasma membrane and correlate it with the ability of seeds to germinate and the vigour of post-germination seedling growth using a range of water stress conditions. We will perform the basic experiments in the model plant Arabidopsis but, in parallel we will also perform pilot experiments in Brassica oleracea, a crop for which co-ordinated germination and early vigour can have a direct, major impact on final yield. By the end of the project we aim to have improved understanding of the regulation of AQP during germination and early sedling growth and to have established strategies to manipulate AQP in order to maximise early vigour and water stress resistance.
该植物科学项目结合了细胞生物学和植物生理学,以了解种子在发芽和末期幼苗生长期间如何占水,以及我们如何控制这一过程以发展可以在水应力条件下发芽和建立的农作物。种子发芽后快速的植物组织扩展对于作物的建立和植物均匀性至关重要,并且在农作物周期结束时直接影响质量和产量。由于这些原因,早期活力是作物改善的重要目标。大多数细胞(包括种子细胞)通过称为水通道蛋白(AQP)的蛋白质水通道吸收水。尽管对AQP的结构和植物根部和叶子的功能知之甚少,但对于它们在种子发芽和末期幼苗生长中的作用知之甚少。我们的项目直接解决了这个问题。 AQP存在于不同的细胞膜上,并且摄入量通常由外部细胞膜(质膜)上的AQP控制。值得注意的是,我们发现在种子中,在种子发芽之后才产生通常存在于质膜上的AQP。那么,在发芽期间控制水进入什么?我们已经发现,在种子成熟和发芽期间,在质膜上也发现了通常位于液泡膜(块状体)上的AQP。因此,似乎种子通过向质膜发送吨位AQP来调节水的摄入量的独特方法。我们还发现,经过改装以产生大量种子AQP的植物能够在水应力的条件下发芽和生长,从而表现出比野生型植物更好的表现。因此,我们假设种子AQP是种子和早期幼苗生长中水流的主要控制器,可用于产生更好地应对干旱状况的植物。我们的项目旨在通过研究块状AQP靶向质子膜的方式来理解AQP的作用。我们还建议操纵种子细胞质膜上存在的AQP的数量和类型,并将其与种子发芽的能力以及使用一系列水应力条件的燃球后幼苗生长的能力相关联。我们将在模型植物拟南芥中进行基本实验,但同时,我们还将在Brassica Oleracea进行试点实验,Brassica Oleracea是一种农作物,该作物的协调发芽和早期活力可以直接对最终产量产生重大影响。到该项目结束时,我们的目标是提高对AQP调节和早期降级增长的调节的了解,并建立了操纵AQP的策略,以最大程度地提高早期活力和耐水性。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Arabidopsis Lunapark proteins are involved in ER cisternae formation.
- DOI:10.1111/nph.15228
- 发表时间:2018-08
- 期刊:
- 影响因子:0
- 作者:Kriechbaumer V;Breeze E;Pain C;Tolmie F;Frigerio L;Hawes C
- 通讯作者:Hawes C
Reprogramming cells to study vacuolar development.
- DOI:10.3389/fpls.2013.00493
- 发表时间:2013
- 期刊:
- 影响因子:5.6
- 作者:Feeney M;Frigerio L;Kohalmi SE;Cui Y;Menassa R
- 通讯作者:Menassa R
Arabidopsis Lunapark proteins are involved in ER cisternae formation
- DOI:10.1101/256743
- 发表时间:2018-01
- 期刊:
- 影响因子:0
- 作者:V. Kriechbaumer;E. Breeze;Charlotte Pain;Frances Tolmie;L. Frigerio;C. Hawes
- 通讯作者:V. Kriechbaumer;E. Breeze;Charlotte Pain;Frances Tolmie;L. Frigerio;C. Hawes
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lorenzo Frigerio其他文献
Lorenzo Frigerio的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lorenzo Frigerio', 18)}}的其他基金
21ENGBIO - Converting a cellular dustbin into a protein storing organelle
21ENGBIO - 将细胞垃圾箱转变为蛋白质储存细胞器
- 批准号:
BB/W012162/1 - 财政年份:2023
- 资助金额:
$ 55.94万 - 项目类别:
Research Grant
Shapeshifting: how is plant ER architecture manipulated by pathogen effectors?
变形:病原体效应子如何操纵植物内质网结构?
- 批准号:
BB/W007126/1 - 财政年份:2022
- 资助金额:
$ 55.94万 - 项目类别:
Research Grant
13 ERA-CAPS PER-ASPERA Frigerio
13 ERA-CAPS PER-ASPERA Frigerio
- 批准号:
BB/M000052/1 - 财政年份:2014
- 资助金额:
$ 55.94万 - 项目类别:
Research Grant
相似国自然基金
新生儿坏死性小肠结肠炎中去泛素化酶USP15调控ILC3分化损伤肠道粘膜屏障的致病机制研究
- 批准号:82371711
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
肝细胞TMEM154介导的线粒体氧化呼吸链对非酒精性脂肪性肝炎进展中炎症微环境的调控作用及其具体机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于具体物理系统的量子相干性问题研究
- 批准号:12175052
- 批准年份:2021
- 资助金额:63 万元
- 项目类别:面上项目
基于TurboID技术揭示LSD1通过激活氧化磷酸化调控多能性退出的具体机制
- 批准号:32100472
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
鉴定及研究一群表达FAP的脂肪组织巨噬细胞调控肥胖相关炎症的具体机制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
相似海外基金
Genetic information transfer to hematopoietic cells: Role of microvesicles
遗传信息传递至造血细胞:微泡的作用
- 批准号:
8434113 - 财政年份:2011
- 资助金额:
$ 55.94万 - 项目类别:
Genetic information transfer to hematopoietic cells: Role of microvesicles
遗传信息传递至造血细胞:微泡的作用
- 批准号:
8064149 - 财政年份:2011
- 资助金额:
$ 55.94万 - 项目类别:
Genetic information transfer to hematopoietic cells: Role of microvesicles
遗传信息传递至造血细胞:微泡的作用
- 批准号:
8236862 - 财政年份:2011
- 资助金额:
$ 55.94万 - 项目类别:
Genetic information transfer to hematopoietic cells: Role of microvesicles
遗传信息传递至造血细胞:微泡的作用
- 批准号:
8645701 - 财政年份:2011
- 资助金额:
$ 55.94万 - 项目类别:
The circadian system in roots - investigation of tissue-specific clock performance and its relation to aquaporin expression
根部的昼夜节律系统 - 组织特异性时钟性能及其与水通道蛋白表达的关系的研究
- 批准号:
127773834 - 财政年份:2009
- 资助金额:
$ 55.94万 - 项目类别:
Research Fellowships