Ultrasound induced nucleation for controlled crystal formation within complex solute and active pharmaceutical ingredient systems.

超声波诱导成核,用于控制复杂溶质和活性药物成分系统中的晶体形成。

基本信息

  • 批准号:
    BB/I016538/1
  • 负责人:
  • 金额:
    $ 11.71万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Training Grant
  • 财政年份:
    2011
  • 资助国家:
    英国
  • 起止时间:
    2011 至 无数据
  • 项目状态:
    已结题

项目摘要

Aims: This study aims to understand the parameters and methods to achieve successful freeze drying of biological material where activity is retained. Background: Bioscience is expanding the opportunity for discovery and selection of active therapeutic molecules. Large numbers of protein molecules have been made available as potential cures or treatments to a wide variety of diseases. Every protein is unstable in the aqueous environment to varying degrees, with most requiring storage to prevent damage before they are used in a research laboratory or as a drug therapy, vaccine or diagnostic test. Freezing is the most common method of reducing degradation to a level suitable for daily laboratory use. However, the Pharmaceutical industry has two real barriers to commercialisation of frozen biological products. The cost of products that are stored and supplied within the 'cold chain' is far greater than those that can be effectively stored at room temperature. Also, although the frozen state is protective over the medium term (1 year) its ability to protect for periods greater than two years is limited. For pharmaceutical products with defined limits of activity and purity it does not take a large amount of degradation to result in the rejection of a product batch. To overcome the issues associated with cold storage, Pharmaceutical companies have sought alternative storage methods. Drying to the powdered state is particularly appealing as materials are more stable and can be transported at room temperature. Transfer to the powder state is not without problems and although the final powder state may be free of degradation, evaporative drying and other simple forms of water removal can result in high levels of degradation. Freeze drying is the industry's preferred method for obtaining dry state materials, although involving large capital investment, infrastructure is in place worldwide. Freeze drying is not a new technology but the recent trend of biologic drugs brings far greater challenges than those associated with small molecules. Freeze drying involves three main stages (freezing, primary drying and secondary drying). Freezing of the material defines the powder's final structure and morphology. Ice is first nucleated and then allowed to grow in size. Primary drying removes the frozen ice crystals using the process of sublimation, the pressures involved in this step allow the solid ice to be removed as vapour, importantly without transition through the liquid state. Scientific rationale: It is well known that agitation induces freezing in super cooled liquids. Ultrasound is one method of causing controlled agitation and has previously been used in freeze drying of small molecules. However, it is not widely used as existing systems work well for small molecules. Systems for freeze drying biologics are not well established and existing methods give low activity recovery (Zheng & Sun, Trends in Food Science & Technology 17 (2006) 16-23). Freezing using ultrasound induced nucleation develops small ice crystal formations so it is expected to prevent damage of proteins and cells which in turn allows the freeze drying process to be completed with retention of higher activity than conventional freezing alone. Pilot work in Dr Ingham's lab has shown its potential with enzymes systems (Aspariginase, B-Galactosidase) and it is expected that this can be improved and extrapolated to cell based systems. Objectives of the study: 1, To better understand the freezing process for freeze drying, we aim to alter the nucleation of ice, particularly targeting high concentration protein solutions (Aspariginase, B-Galactosidase) and complex systems including bacteria (E. coli HBIOI) and mammalian cells (caco-2). 2, Optimise freeze drying parameters for a range of model materials including proteins, bacterial and mammalian cells and collagen scaffolds 3, Apply new parameters to pharmaceutically useful biological systems
目的:本研究旨在了解能够在保留活性的生物学材料中成功冷冻干燥的参数和方法。背景:生物科学正在扩大发现和选择活性治疗分子的机会。已将大量蛋白质分子作为对多种疾病的潜在治疗方法或治疗方法提供。每种蛋白质在水性环境中的不同程度上都是不稳定的,大多数蛋白质需要存储才能防止损害在研究实验室或用作药物疗法,疫苗或诊断测试。冻结是将降解降低到适合日常实验室使用的水平的最常见方法。但是,制药行业有两个真正的冷冻生物产品商业化障碍。在“冷链”中存储和提供的产品的成本远大于可以在室温下有效存储的产品的成本。同样,尽管冷冻状态在中期(1年)中具有保护性的保护能力超过两年的能力是有限的。对于具有定义的活性和纯度限制的药物产品,不需要大量降解即可拒绝产品批次。为了克服与冷藏相关的问题,制药公司已寻求替代性存储方法。粉末状状态的干燥特别吸引人,因为材料更稳定,可以在室温下运输。转移到粉末状态并非没有问题,尽管最终粉末状态可能没有降解,但蒸发干燥和其他简单的水去除可能会导致高水平的降解。冻干是该行业获得干燥状态材料的首选方法,尽管涉及大量资本投资,但基础设施在全球范围内就位。冷冻干燥不是一项新技术,而是最新的生物药物趋势比与小分子相关的挑战更大。冷冻干燥涉及三个主要阶段(冻结,初级干燥和次要干燥)。材料的冷冻定义了粉末的最终结构和形态。首先将冰核成分,然后允许大小生长。一级干燥使用升华过程去除冷冻的冰晶,此步骤中涉及的压力可以使固体冰作为蒸气去除,并且重要的是没有通过液态过渡。科学原理:众所周知,搅拌会引起超冷却液体的冻结。超声是引起受控搅拌的一种方法,以前已用于冻干小分子。但是,由于现有系统适用于小分子,因此并未被广泛使用。冻干生物制剂的系统尚未确定,现有方法可使活动恢复低(Zheng&Sun,食品科学与技术的趋势17(2006)16-23)。使用超声诱导成核的冻结会发展出小冰晶体的形成,因此预计它会防止蛋白质和细胞的损害,从而使冻干过程允许与单独的常规冻结相比保持更高的活性。 Ingham博士实验室中的试验工作表明了其潜力在酶系统(天冬糖苷酶,B-半乳糖苷酶)中,并且可以预期可以改善并将其推断到基于细胞的系统中。研究的目的:1,为了更好地了解冷冻干燥的冻结过程,我们旨在改变冰的成核,尤其是针对高浓度蛋白质溶液(天素酶,B-半乳糖苷酶)和包括细菌(E. coli hbioi)和哺乳动物细胞(CACO-2)的复杂系统。 2,优化一系列模型材料的冻干参数,包括蛋白质,细菌和哺乳动物细胞以及胶原蛋白支架3,将新参数应用于药物有用的生物系统

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

Tetraspanins predict the prognosis and characterize the tumor immune microenvironment of glioblastoma.
  • DOI:
    10.1038/s41598-023-40425-w
  • 发表时间:
    2023-08-16
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
  • 通讯作者:
Axotomy induces axonogenesis in hippocampal neurons through STAT3.
  • DOI:
    10.1038/cddis.2011.59
  • 发表时间:
    2011-06-23
  • 期刊:
  • 影响因子:
    9
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    $ 11.71万
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    $ 11.71万
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    $ 11.71万
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    $ 11.71万
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    $ 11.71万
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    $ 11.71万
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    $ 11.71万
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    $ 11.71万
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    $ 11.71万
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    $ 11.71万
  • 项目类别:
    Studentship

相似国自然基金

基于成核-聚合诱导自组装制备非球形豌豆蛋白纳米颗粒及其稳定乳液机制的研究
  • 批准号:
    32372359
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向碳封存的嗜碱藻类诱导镁碳酸盐矿物成核生长过程研究
  • 批准号:
    42373055
  • 批准年份:
    2023
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
氧化石墨烯诱导有序C-S-H凝胶成核生长机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
铝盐诱导硅酸自聚成核与桥连形成反渗透膜污染的机制及其调控
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
氧化石墨烯诱导有序C-S-H凝胶成核生长机制研究
  • 批准号:
    52208240
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Witnessing the birth of a crystal by laser induced nucleation
见证激光诱导成核晶体的诞生
  • 批准号:
    2870879
  • 财政年份:
    2023
  • 资助金额:
    $ 11.71万
  • 项目类别:
    Studentship
Mechanisms of cell survival response induced by oxygen environment after ionizing radiations
电离辐射后氧环境诱导细胞存活反应的机制
  • 批准号:
    22H03032
  • 财政年份:
    2022
  • 资助金额:
    $ 11.71万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
On the Mechanism and Utility of Laser-Induced Nucleation using Microfluidics
微流控激光诱导成核的机制和实用性
  • 批准号:
    2103689
  • 财政年份:
    2021
  • 资助金额:
    $ 11.71万
  • 项目类别:
    Standard Grant
Study on production of Low-energy light ions in proton- and neutron-induced reactions and their transport in material and biological body
质子和中子诱导反应中低能轻离子的产生及其在材料和生物体内的传输研究
  • 批准号:
    21H01863
  • 财政年份:
    2021
  • 资助金额:
    $ 11.71万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Effect of hypoxia on the repair process of radiation-induced DNA double-strand breaks
缺氧对辐射引起的DNA双链断裂修复过程的影响
  • 批准号:
    19K08215
  • 财政年份:
    2019
  • 资助金额:
    $ 11.71万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了