Systems Biology Modeling of Severe Community-Acquired Pneumonia
严重社区获得性肺炎的系统生物学模型
基本信息
- 批准号:10551466
- 负责人:
- 金额:$ 58.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-01-17 至 2027-12-31
- 项目状态:未结题
- 来源:
- 关键词:2019-nCoVBiological MarkersBiological ModelsBlood specimenBronchoalveolar LavageCOVID-19 pneumoniaCOVID-19 treatmentCalciumCaringCellsClinicalClinical DataClinical TrialsCollaborationsControlled Clinical TrialsCurettage procedureDataData ScientistData SetDisease modelDisparateDistalElectronic Health RecordEnrollmentEpidemicFoundationsFrequenciesHospitalizationHospitalsImmune responseInfectionInfluenza A virusInterventionLungMachine LearningMechanical ventilationMiddle East Respiratory Syndrome CoronavirusModalityModelingMolecularMolecular ProfilingMultiomic DataNasopharynxNoseNosocomial pneumoniaOutcomePathogenesisPathway interactionsPatientsPhase II Clinical TrialsPhenotypePneumoniaPopulationPrediction of Response to TherapyProcessProteomicsPublic HealthPublishingResearch InfrastructureResearch PersonnelSARS coronavirusSARS-CoV-2 pathogenesisSamplingSecondary toSerumSpace ModelsSteroidsSystems BiologyT-LymphocyteTestingTherapeuticTranslatingUpdateVariantViralVirusZoonosescell typeclimate changeclinical predictorscommunity acquired pneumoniacytokineemerging pathogenepigenomicsexperimental studygenomic dataimprovedinhibitorinsightlung microbiomemicrobiome analysismortalitymouse modelmultiple omicsnovelnovel therapeuticspandemic diseasepandemic potentialpathogenpathogen genomicspharmacologicphase II trialpneumonia modelpneumonia treatmentpredictive modelingprospectiveprototyperespiratoryresponsesevere COVID-19single-cell RNA sequencingspecific biomarkerstargeted treatmenttocilizumabtooltreatment response
项目摘要
Project Summary/Abstract – Project 1
Pandemic community-acquired pneumonia (CAP) secondary to infection with the severe acute respiratory
syndrome coronavirus-2 (SARS-CoV-2) brought the public health importance of CAP into sharp focus.
Investigators in the Successful Clinical Response in Pneumonia Therapy (SCRIPT) systems biology center
developed a robust research infrastructure to prospectively collect 1,567 serial distal respiratory samples from
595 patients with severe CAP and hospital acquired pneumonia (HAP) requiring mechanical ventilation and
analyze these clinical samples using state-of-the art multi-omics approaches. We leveraged these data to
generate a systems model of SARS-CoV-2 pathogenesis and applied it toward a successful clinical trial of
Auxora, a calcium release activated channel inhibitor, that resulted in a 53% reduction in 30-day mortality in a
phase II trial. In Super-SCRIPT (SCRIPT2), we propose to leverage and expand the longitudinal clinical and
molecular data in SCRIPT. By applying machine learning to clinical data, we observe that patients with severe
pneumonia undergo transitions between distinct, clinically recognizable states over the course of their
hospitalization that are associated with more or less favorable outcomes. These transitions will serve as the
foundation for a model incorporating preliminary data generated from BAL and serum analysis that includes
single-cell RNA-sequencing of more than 500,000 bronchoalveolar lavage cells, cytokine levels, proteomic, T
cell epigenomic, and microbiome analyses. We will use these clinical and molecular data to test the hypothesis
that machine learning approaches applied to a latent space model of disease pathogenesis can identify
molecular predictors of favorable and unfavorable clinical transitions/outcomes during the clinical
course of CAP. A corollary hypothesis is that perturbations of these determinants during controlled clinical trials
of pharmacologic interventions will allow iteration of the models’ predictive capabilities. We will address these
hypotheses in three Specific Aims:
Aim 1. To identify clinical predictors of favorable and unfavorable clinical transitions/outcomes over
the course of CAP in patients requiring hospitalization.
Aim 2. To determine distinct host or pathogen genomic features that predict favorable or unfavorable
clinical transitions/outcomes in patients with severe CAP.
Aim 3. To identify pathways that can be targeted for therapy with existing or newly developed
therapeutics.
SCRIPT2 draws on successful collaborations between clinicians, biologists and data scientists to organize clinical
data, process distal lung samples and integrate disparate datasets into latent space models to develop large
scale models of pneumonia that can be rapidly translated into care pathways and novel therapies.
项目总结/摘要 – 项目 1
继发于严重急性呼吸道疾病感染的大流行性社区获得性肺炎(CAP)
冠状病毒综合征冠状病毒-2 (SARS-CoV-2) 让 CAP 对公共卫生的重要性成为人们关注的焦点。
肺炎治疗成功临床反应 (SCRIPT) 系统生物学中心的研究人员
开发了强大的研究基础设施,以前瞻性地收集 1,567 个系列远端呼吸道样本
595 例重症 CAP 和医院获得性肺炎 (HAP) 患者需要机械通气和
我们利用最先进的多组学方法分析这些临床样本。
生成 SARS-CoV-2 发病机制的系统模型,并将其应用于成功的临床试验
Auxora 是一种钙释放激活通道抑制剂,可使 30 天死亡率降低 53%
在 Super-SCRIPT (SCRIPT2) 中,我们建议利用和扩展临床纵向和临床研究。
SCRIPT 中的分子数据通过将机器学习应用于临床数据,我们观察到重症患者
肺炎在其发展过程中经历不同的、临床认可的状态之间的转变
这些转变将作为与或多或少有利的结果相关的住院治疗。
建立模型的基础,该模型结合了 BAL 和血清分析生成的初步数据,其中包括
对超过 500,000 个支气管肺泡灌洗细胞、细胞因子水平、蛋白质组、T 进行单细胞 RNA 测序
我们将使用这些临床和分子数据来检验假设。
应用于疾病发病机制的潜在空间模型的机器学习方法可以识别
临床期间有利和不利的临床转变/结果的分子预测因子
CAP 的一个推论假设是这些决定因素在对照临床试验中受到干扰。
药物干预措施将允许迭代模型的预测能力,我们将解决这些问题。
三个具体目标的假设:
目标 1. 确定有利和不利的临床转变/结果的临床预测因素
需要住院治疗的患者的 CAP 病程。
目标 2. 确定预测有利或不利的不同宿主或病原体基因组特征
严重 CAP 患者的临床转变/结果。
目标 3. 确定现有或新开发的治疗目标途径
疗法。
SCRIPT2 利用忠诚者、生物学家和数据科学家之间的成功合作来组织临床
数据,处理远端肺部样本并将不同的数据集集成到潜在空间模型中以开发大型
肺炎的比例模型可以快速转化为护理途径和新疗法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RICHARD G WUNDERINK其他文献
RICHARD G WUNDERINK的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('RICHARD G WUNDERINK', 18)}}的其他基金
Successful Clinical Response In Pneumonia Therapy (SCRIPT) Systems Biology Center
肺炎治疗 (SCRIPT) 系统生物学中心成功的临床反应
- 批准号:
10322470 - 财政年份:2021
- 资助金额:
$ 58.24万 - 项目类别:
Successful Clinical Response In Pneumonia Therapy (SCRIPT) Systems Biology Center
肺炎治疗 (SCRIPT) 系统生物学中心成功的临床反应
- 批准号:
10326809 - 财政年份:2018
- 资助金额:
$ 58.24万 - 项目类别:
Successful Clinical Response In Pneumonia Therapy (SCRIPT) Systems Biology Center
肺炎治疗 (SCRIPT) 系统生物学中心成功的临床反应
- 批准号:
10582471 - 财政年份:2018
- 资助金额:
$ 58.24万 - 项目类别:
Project 1: Dynamic Host Responses During Resolution of HAP
项目 1:解决 HAP 期间的动态主机响应
- 批准号:
10326814 - 财政年份:2018
- 资助金额:
$ 58.24万 - 项目类别:
Successful Clinical Response In Pneumonia Therapy (SCRIPT) Systems Biology Center
肺炎治疗 (SCRIPT) 系统生物学中心成功的临床反应
- 批准号:
10551461 - 财政年份:2018
- 资助金额:
$ 58.24万 - 项目类别:
相似国自然基金
基于多维组学的AL生物标志物挖掘与辅助诊断模型研究
- 批准号:62371112
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
基于多组学生物标志物预测银屑病光疗疗效的模型构建及验证
- 批准号:82304061
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于多种生物标志物和机器学习算法构建特发性快速眼动睡眠行为障碍向α-突触核蛋白病转化的预测模型研究
- 批准号:82201401
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
激素敏感癌症的演化标志物发现:知识引导的生物信息学模型
- 批准号:32270690
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
基于肿瘤微环境“微生物-免疫-肿瘤”作用模型的胃癌分型生物标志物筛选及验证研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
相似海外基金
Core 3: Biocontainment Research Support Services Core
核心 3:生物防护研究支持服务核心
- 批准号:
10791950 - 财政年份:2023
- 资助金额:
$ 58.24万 - 项目类别:
Collaborative Research: DMS/NIGMS 1: Identifiability investigation of Multi-scale Models of Infectious Diseases
合作研究:DMS/NIGMS 1:传染病多尺度模型的可识别性研究
- 批准号:
10794480 - 财政年份:2023
- 资助金额:
$ 58.24万 - 项目类别:
Multiplex Hybridization Colorimetric Sensor for Wild Type and Variant RNA Biomarkers
用于野生型和变异 RNA 生物标志物的多重杂交比色传感器
- 批准号:
10580293 - 财政年份:2023
- 资助金额:
$ 58.24万 - 项目类别:
Statistical Methods in COVID-19/PASC Clinical Research
COVID-19/PASC 临床研究的统计方法
- 批准号:
10584243 - 财政年份:2023
- 资助金额:
$ 58.24万 - 项目类别:
Determinants of Convalescent and Vaccine-induced Mucosal Specific Immunity to SARS-CoV-2 and Variants of Concern in Children with Asthma
哮喘儿童恢复期和疫苗诱导的 SARS-CoV-2 粘膜特异性免疫以及值得关注的变体的决定因素
- 批准号:
10638521 - 财政年份:2023
- 资助金额:
$ 58.24万 - 项目类别: