Project 2: Causal Relationship Disentangler for Precision Nutrition
项目2:精准营养的因果关系解开器
基本信息
- 批准号:10552678
- 负责人:
- 金额:$ 18.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-19 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressArtificial IntelligenceBiometryChronic DiseaseComputer softwareDataData ScienceDietDietary PracticesEnvironmentEquilibriumFaceFeedbackFoodFood PatternsFundingGeneticGoalsGuidelinesHealthIndividualInformaticsInterventionKnowledgeLearningLinkMental HealthMethodsModelingOutcomeParticipantPathway interactionsPatternPersonsPhysiologyPopulationPrecision HealthRisk ReductionSocial CharacteristicsSpecific qualifier valueStructureSystemTranslatingUnited States National Institutes of HealthWorkcausal modelcostdata preservationdietarydietary guidelinesemotional eatingimprovedindividual responseinnovationlearning strategynovel strategiesnutritionphysical conditioningprecision nutritionpreservationprogramsstatisticstool
项目摘要
Abstract-Project 2: Causal Relationship Disentangler for Precision Nutrition
Predicting individual responses to food and dietary patterns, the stated goal of the National Institutes
of Health (NIH) Common Fund’s Nutrition for Precision Health program, requires uncovering the causal
connections between diet and health. Despite the importance of diet for treating and reducing risk of many
chronic diseases, guidelines often rely on associations rather than causal relationships. Establishing a causal
model (set of causal relationships) is vital to provide accurate dietary guidelines to individuals and help them
balance priorities. The key obstacles to a comprehensive model of causes and effects of diet have been a lack
of methods to translate findings to new populations and a lack of data suitable to learn about causes. The first
major challenge is understanding to whom and under what conditions a finding applies. There are no existing
methods that can identify causal relationships between diet and other factors and can determine when these
findings apply. A second core obstacle is that dietary studies often capture different sets of variables due to the
cost and challenge of collecting data on the many causes and effects of nutrition, and many studies rely on
food logs kept by participants. This leads to missing variables and missing values, and both can confound
causal inference. Many methods exist for imputing missing values but they may lead to unacceptable errors for
individuals based on patterns of missingness in real-world data. Single imputation methods provide a single
value for each missing instance. Thus, given the type of missingness we face in nutrition (both missing
at random [MAR] and missing not at random [MNAR]) and the importance of establishing causal
relationships rather than correlations, there is a significant need for new imputation methods. To
address this, we introduce new approaches for handling missing data that preserve causal structure.
In the Causal Relationship Disentangler for Precision Nutrition we propose new methods for causal
generalizability that learn when and why causal relationships are true. Our methods are applicable to
all health outcomes and timescales. Learning how to transfer causal knowledge and doing so with missing
data is critically important for realizing the potential of nutrition for precision health. Precision health requires
knowing what conclusions we can draw about both populations and individuals and being able to
systematically predict what interventions will work for an individual. Our automated approaches to generalizing
causal models will provide the critical link between data and actions, allowing the knowledge created to
generalize beyond All of Us. Our investigative team has for over a decade developed new methods that learn
causal models from observational data and provide automated causal explanations, as well as statistics, data
science, and biostatistics. Aim 1 will develop methods for generalizing causal relationships and learning when
they apply. Aim 2 will develop improved methods for reconstructing missing data that preserve causal
structure. Aim 3 will develop individual and generalizable causal models of nutrition and health.
摘要项目 2:精准营养的因果关系解开剂
预测个人对食物和饮食模式的反应,这是国家研究所的既定目标
美国国立卫生研究院 (NIH) 共同基金的精准健康营养计划,需要揭示因果关系
尽管饮食对于治疗和降低许多疾病的风险很重要。
对于慢性病,指南通常依赖于关联而不是建立因果关系。
模型(一组因果关系)对于为个人提供准确的饮食指南并帮助他们至关重要
平衡优先事项的主要障碍是缺乏饮食因果关系的综合模型。
将研究结果转化为新人群的方法和缺乏适合了解原因的数据。
主要挑战是了解研究结果适用于谁以及在什么条件下适用。
可以识别饮食与其他因素之间因果关系的方法,并可以确定何时这些因素
研究结果适用的第二个核心障碍是,饮食研究经常捕获不同的变量集。
收集有关营养的多种原因和影响的数据的成本和挑战,并且许多研究依赖于
参与者保存的食物日志会导致变量缺失和值缺失,两者都会造成混淆。
存在许多用于估算缺失值的方法,但它们可能会导致不可接受的错误。
基于现实世界数据缺失模式的个体提供单一插补方法。
因此,考虑到我们在营养方面面临的缺失类型(两者都缺失)。
随机[MAR]和非随机缺失[MNAR])以及建立因果关系的重要性
由于关系而不是相关性,因此非常需要新的插补方法。
为了解决这个问题,我们引入了处理丢失数据的新方法,以保留因果结构。
在精准营养的因果关系解开器中,我们提出了因果关系的新方法
普遍性,了解因果关系何时以及为何成立,我们的方法适用于。
学习如何传递因果知识并在缺失的情况下这样做。
数据对于实现精准健康所需的营养潜力至关重要。
知道我们可以对群体和个人得出什么结论,并能够
我们必然会预测哪些干预措施对个人有效。
因果模型将提供数据和行动之间的关键联系,使所创建的知识能够
十多年来,我们的研究团队开发了新的学习方法。
来自观察数据的因果模型并提供自动因果解释以及统计、数据
目标 1 将开发概括因果关系和学习的方法。
他们的目标 2 将开发改进的方法来重建保留因果关系的缺失数据。
目标 3 将开发个体的、可推广的营养与健康因果模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SAMANTHA KLEINBERG其他文献
SAMANTHA KLEINBERG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SAMANTHA KLEINBERG', 18)}}的其他基金
Project 2: Causal Relationship Disentangler for Precision Nutrition
项目2:精准营养的因果关系解开器
- 批准号:
10386500 - 财政年份:2022
- 资助金额:
$ 18.72万 - 项目类别:
BIGDATA: Causal Inference in Large-Scale Time Series
大数据:大规模时间序列中的因果推断
- 批准号:
9097149 - 财政年份:2013
- 资助金额:
$ 18.72万 - 项目类别:
BIGDATA: Causal Inference in Large-Scale Time Series
大数据:大规模时间序列中的因果推断
- 批准号:
10577884 - 财政年份:2013
- 资助金额:
$ 18.72万 - 项目类别:
BIGDATA: Causal Inference in Large-Scale Time Series
大数据:大规模时间序列中的因果推断
- 批准号:
9282329 - 财政年份:2013
- 资助金额:
$ 18.72万 - 项目类别:
BIGDATA: Causal Inference in Large-Scale Time Series
大数据:大规模时间序列中的因果推断
- 批准号:
10415027 - 财政年份:2013
- 资助金额:
$ 18.72万 - 项目类别:
BIGDATA: Causal Inference in Large-Scale Time Series with Rare and Latent Events
大数据:具有罕见和潜在事件的大规模时间序列的因果推断
- 批准号:
8852180 - 财政年份:2013
- 资助金额:
$ 18.72万 - 项目类别:
相似国自然基金
人工智能技术加剧全球价值链非平衡发展的形成机理与中国对策研究
- 批准号:72303127
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于计算模拟和人工智能融合策略的卡宾蛋白酶优化和设计
- 批准号:22303102
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
教育人工智能背景下课程智慧大脑构建研究
- 批准号:62367003
- 批准年份:2023
- 资助金额:29 万元
- 项目类别:地区科学基金项目
人工智能驱动的PDE4抑制剂设计及抗肺纤维化作用研究
- 批准号:82304384
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
知识型员工与人工智能合作中的管理挑战:信任难题、责任难题与技术框架
- 批准号:72302217
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Using Artificial Intelligence to Predict Cognitive Training Response in Amnestic Mild Cognitive Impairment
使用人工智能预测遗忘型轻度认知障碍患者的认知训练反应
- 批准号:
10572105 - 财政年份:2023
- 资助金额:
$ 18.72万 - 项目类别:
Nutrition for Precision Health, powered by the All of Us Research Program: Research Coordinating Center
精准健康营养,由“我们所有人研究计划”提供支持:研究协调中心
- 批准号:
10757488 - 财政年份:2023
- 资助金额:
$ 18.72万 - 项目类别:
Real-time Volumetric Imaging for Motion Management and Dose Delivery Verification
用于运动管理和剂量输送验证的实时体积成像
- 批准号:
10659842 - 财政年份:2023
- 资助金额:
$ 18.72万 - 项目类别:
Precompetitive Collaboration on Liquid Biopsy for Early Cancer Assessment: Data Management and Coordinating Unit
用于早期癌症评估的液体活检的竞争前合作:数据管理和协调单位
- 批准号:
10838127 - 财政年份:2023
- 资助金额:
$ 18.72万 - 项目类别: