Harmonization for multisite Connectomics: parsing heterogeneity and creating markers in ASD
多站点连接组学的协调:解析 ASD 中的异质性并创建标记
基本信息
- 批准号:10551257
- 负责人:
- 金额:$ 66.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-08 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAgeAnisotropyArtificial IntelligenceAttention deficit hyperactivity disorderBehavioralBiologicalBiological MarkersBiologyBrainBrain regionClinicalCognitiveCommunicationCommunitiesDataData SetDiffusion Magnetic Resonance ImagingDimensionsDiseaseEffectivenessFutureGeneticGoalsHeterogeneityImageIndividualInvestigationLearningLinkMagnetic Resonance ImagingMeasurementMeasuresMental HealthMethodsModalityMood DisordersMorphologic artifactsMotionPatientsPhenotypeProliferatingProtocols documentationPsychosesQuality ControlResearchSample SizeSamplingScanningSiteSourceStructureSubgroupSymptomsSystemTissuesTrainingautism communityautism spectrum disorderdata harmonizationdata integrationdeep learningdesigndiagnostic biomarkerindexinglarge datasetsmagnetic resonance imaging biomarkerneuroimagingprecision medicinepreservationrepetitive behaviorsexsocialsuccesstoolwhite matter
项目摘要
Diffusion MRI (dMRI) provides a superior characterization of white matter and connectivity compared to other
MRI modalities, and is routinely included in studies of disorders with atypical brain connectivity like autism
spectrum disorder (ASD). The field could benefit tremendously from combining studies, to have comprehensive
representation of the underlying heterogeneity in connectivity-based disorders. This is rendered challenging by
dMRI being very sensitive to acquisition parameters, needing sophisticated statistical harmonization tools due
to the complicated effect of scanner related changes. This also calls for a robust automated quality control
(QC) protocol prior to data harmonization. Thus, in this proposal, we will develop tools to facilitate integration of
dMRI data across studies. In Aim 1, we will develop and validate a deep learning based tool for automating QC
for dMRI data that will identify different data artifacts (caused by multiple sources like scanner, coil, scan
parameters, motion etc), and the appropriate action that needs to be taken (like motion and eddy correction). In
Aim 2, we will develop a suite of tools for harmonizing dMRI measures to remove acquisition differences. The
effectiveness of our proposed tools will be demonstrated by harmonizing ~1500 datasets (ages 6-32 years)
from 11 ASD studies. These large harmonized datasets create the need for a subject-wise characterization of
the sample and for diagnostic markers that harness the imaging heterogeneity of the larger harmonized
sample. To address this new need, we will develop additional connectomic analysis tools, that will be adapted
to ASD to create the CHARM (Connectomic Heterogeneity in Autism Research through Multi-site dMRI
harmonization) suite comprising of a generalizable biomarker of ASD, as well as a dimensional connectomic
coordinate system. In Aim 3, we will characterize each subject using a connectivity phenotype, cluster the
integrated ASD sample based on this connectivity-phenotype, define a classifier for each cluster; and create a
connectivity-based ensemble biomarker of ASD, called the CHARM-marker, combining these cluster-specific
classifier decisions. Finally, in Aim 4, we will create a subject-wise characterization of ASD by designing a
multi-dimensional connectomic coordinate system using metric learning, to quantify the dissimilarity of each
subject from the harmonized healthy controls. We will elucidate the link of these CHARM-coordinates to ASD
constructs, by correlating core ASD symptoms with the CHARM coordinates in the harmonized/combined
sample. This will enable the ASD community to associate informative connectomic dimensions with each
subject, facilitating subject-wise longitudinal assessment, paving the way for precision medicine. Such a group-
based and subject-wise characterization of ASD could not have been possible without data integration.
Additionally, the neuroimaging community will have new dMRI harmonization and connectomic analysis tools
enabling the integration of studies for a more comprehensive connectomic investigation of existing data. It will
pave the way for such studies in other connectivity-related disorders that affect mental health.
与其他技术相比,扩散 MRI (dMRI) 可以更好地表征白质和连接性
MRI 模式,通常包含在自闭症等非典型大脑连接疾病的研究中
谱系障碍(ASD)。该领域可以从结合研究中获益匪浅,获得全面的研究成果
基于连通性的疾病中潜在异质性的表示。这变得具有挑战性
dMRI 对采集参数非常敏感,需要复杂的统计协调工具,因为
扫描仪相关变化的复杂影响。这也需要强大的自动化质量控制
数据协调之前的(QC)协议。因此,在本提案中,我们将开发工具来促进集成
跨研究的 dMRI 数据。在目标 1 中,我们将开发并验证基于深度学习的自动化 QC 工具
用于识别不同数据伪影的 dMRI 数据(由扫描仪、线圈、扫描仪等多个源引起)
参数、运动等),以及需要采取的适当措施(如运动和涡流校正)。在
目标 2,我们将开发一套工具来协调 dMRI 测量,以消除采集差异。这
我们提出的工具的有效性将通过协调约 1500 个数据集(年龄 6-32 岁)来证明
来自 11 项 ASD 研究。这些大型统一数据集需要按主题描述
样本和诊断标记物利用更大的统一的成像异质性
样本。为了满足这一新需求,我们将开发额外的连接组分析工具,这些工具将适应
与 ASD 合作创建 CHARM(通过多站点 dMRI 进行自闭症研究中的连接组异质性)
协调)套件包含 ASD 的通用生物标志物以及维度连接组
坐标系。在目标 3 中,我们将使用连通性表型来表征每个受试者,对
基于该连通性表型的集成 ASD 样本,为每个簇定义一个分类器;并创建一个
基于连通性的 ASD 整体生物标记,称为 CHARM 标记,结合了这些簇特定的标记
分类器决策。最后,在目标 4 中,我们将通过设计一个
使用度量学习的多维连接体坐标系,以量化每个连接体的差异
受统一健康控制的影响。我们将阐明这些 CHARM 坐标与 ASD 的联系
通过将核心 ASD 症状与协调/组合中的 CHARM 坐标相关联来构建
样本。这将使 ASD 社区能够将信息丰富的连接体维度与每个
主题,促进主题纵向评估,为精准医学铺平道路。这样的一个群体——
如果没有数据集成,就不可能对 ASD 进行基于主题的表征。
此外,神经影像学界将拥有新的 dMRI 协调和连接组分析工具
能够整合研究,以便对现有数据进行更全面的连接组学调查。它将
为影响心理健康的其他连接相关疾病的此类研究铺平道路。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Connectomic consistency: a systematic stability analysis of structural and functional connectivity.
连接组一致性:结构和功能连接的系统稳定性分析。
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Osmanlıoğlu, Yusuf;Alappatt, Jacob A;Parker, Drew;Verma, Ragini
- 通讯作者:Verma, Ragini
Analysis of Consistency in Structural and Functional Connectivity of Human Brain.
人脑结构和功能连接的一致性分析。
- DOI:
- 发表时间:2020-04
- 期刊:
- 影响因子:0
- 作者:Osmanlıoğlu, Yusuf;Alappatt, Jacob A;Parker, Drew;Verma, Ragini
- 通讯作者:Verma, Ragini
Graph Matching Based Connectomic Biomarker with Learning for Brain Disorders.
基于图匹配的连接组生物标记与脑部疾病学习。
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Shen, Rui Sherry;Alappatt, Jacob A;Parker, Drew;Kim, Junghoon;Verma, Ragini;Osmanlıoğlu, Yusuf
- 通讯作者:Osmanlıoğlu, Yusuf
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ragini Verma其他文献
Ragini Verma的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ragini Verma', 18)}}的其他基金
Harmonization for multisite Connectomics: parsing heterogeneity and creating markers in ASD
多站点连接组学的协调:解析 ASD 中的异质性并创建标记
- 批准号:
10092221 - 财政年份:2019
- 资助金额:
$ 66.91万 - 项目类别:
Harmonization for multisite Connectomics: parsing heterogeneity and creating markers in ASD
多站点连接组学的协调:解析 ASD 中的异质性并创建标记
- 批准号:
10335117 - 财政年份:2019
- 资助金额:
$ 66.91万 - 项目类别:
Harmonization for multisite Connectomics: parsing heterogeneity and creating markers in ASD
多站点连接组学的协调:解析 ASD 中的异质性并创建标记
- 批准号:
9927671 - 财政年份:2019
- 资助金额:
$ 66.91万 - 项目类别:
Temporal connectomics for infant brain: neurodevelopment modulated by pathology
婴儿大脑的颞连接组学:病理学调节的神经发育
- 批准号:
9247655 - 财政年份:2017
- 资助金额:
$ 66.91万 - 项目类别:
Quantifiable markers of ASD via multivariate MEG-DTI combination
通过多元 MEG-DTI 组合可量化 ASD 标记
- 批准号:
8517891 - 财政年份:2013
- 资助金额:
$ 66.91万 - 项目类别:
Quantifiable markers of ASD via multivariate MEG-DTI combination
通过多元 MEG-DTI 组合可量化 ASD 标记
- 批准号:
8679003 - 财政年份:2013
- 资助金额:
$ 66.91万 - 项目类别:
Novel computational methods for higher order diffusion MRI in autism
自闭症高阶扩散 MRI 的新计算方法
- 批准号:
8150423 - 财政年份:2010
- 资助金额:
$ 66.91万 - 项目类别:
Novel computational methods for higher order diffusion MRI in autism
自闭症高阶扩散 MRI 的新计算方法
- 批准号:
8722957 - 财政年份:2010
- 资助金额:
$ 66.91万 - 项目类别:
Novel computational methods for higher order diffusion MRI in autism
自闭症高阶扩散 MRI 的新计算方法
- 批准号:
8308691 - 财政年份:2010
- 资助金额:
$ 66.91万 - 项目类别:
Novel computational methods for higher order diffusion MRI in autism
自闭症高阶扩散 MRI 的新计算方法
- 批准号:
8517817 - 财政年份:2010
- 资助金额:
$ 66.91万 - 项目类别:
相似国自然基金
多氯联苯与机体交互作用对生物学年龄的影响及在衰老中的作用机制
- 批准号:82373667
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于年龄和空间的非随机混合对性传播感染影响的建模与研究
- 批准号:12301629
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
母传抗体水平和疫苗初种年龄对儿童麻疹特异性抗体动态变化的影响
- 批准号:82304205
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
运动状态下代谢率的年龄变化特征及对人体热舒适的影响研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
基于堆叠式集成学习探索人居环境对生物学年龄的影响
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Executive functions in urban Hispanic/Latino youth: exposure to mixture of arsenic and pesticides during childhood
城市西班牙裔/拉丁裔青年的执行功能:童年时期接触砷和农药的混合物
- 批准号:
10751106 - 财政年份:2024
- 资助金额:
$ 66.91万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 66.91万 - 项目类别:
Identifying and testing a tailored strategy to achieve equity in blood pressure control in PACT
确定并测试量身定制的策略,以在 PACT 中实现血压控制的公平性
- 批准号:
10538513 - 财政年份:2023
- 资助金额:
$ 66.91万 - 项目类别:
Stopping Hydroxychloroquine In Elderly Lupus Disease (SHIELD)
停止使用羟氯喹治疗老年狼疮病 (SHIELD)
- 批准号:
10594743 - 财政年份:2023
- 资助金额:
$ 66.91万 - 项目类别: