Mobile Ecological Momentary Diet Assessment: A Low Burden, Ecologically-Valid Approach to Measuring Dietary Intake in Near-Real Time

移动生态瞬时饮食评估:一种低负担、生态有效的近实时测量膳食摄入量的方法

基本信息

  • 批准号:
    10550227
  • 负责人:
  • 金额:
    $ 65.23万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-04-01 至 2026-01-31
  • 项目状态:
    未结题

项目摘要

ABSTRACT The excessive intake of saturated fat and added sugars has been identified as a leading cause of premature mortality among adults in the U.S. contributing to approximately 700,000 deaths each year. The 2015-2020 Dietary Guidelines for Americans recommend limiting these nutrients to <10% total energy intake to prevent disease. Achieving these public health recommendations will require understanding the patterns of saturated fat and added sugar intake so more effective dietary interventions can be developed. Traditionally, estimates of saturated fat and added sugar intake are measured using food frequency questionnaires or 24-hr dietary recalls (24HR). These methods are time-intensive and cognitively taxing for users and costly for researchers. They are also highly prone to recall bias and misreporting related due, in part, to the reliance on a person’s memory over long recall intervals and errors in portion size estimation. The proposed dietary assessment method aims to address these limitations with ecological momentary assessment (EMA). EMA uses updated technology and sampling methods that can update and improve upon traditional assessment methods. EMA studies often use mobile phone apps to assess events with brief, automated surveys delivered periodically throughout the day. EMA can, thereby, shorten recall intervals to improve reporting errors and reduce user and researcher burden while maximizing the ecological validity. To date, mobile EMA methods for diet assessment (mEMDA) used in research have been study specific. They have not been systematically developed nor optimized for widespread use in research. This project would represent the first research-quality and fully automated, EMA-based mobile dietary assessment research tool. In recent pilot work, we demonstrated the potential utility of mEMDA. A brief mobile survey performed as well as web-assisted 24HR to estimate the intake of predefined snack foods. Here, the goal of the proposed project is to systematically develop and test a mEMDA app and sampling approach to accurately estimate the intake of saturated fat and added sugars in a diverse population. To do this we will derive a culturally- and demographically representative list of foods and beverages that contribute a majority (>70%) of the saturated fat and added sugars in the American diet using recent NHANES data (Aim 1); develop with a user-centered design the mEMDA app and analysis platform with visual food images for portion size estimation and nutrient analysis capabilities (Aim 2); determine the best mEMDA sampling approach (event-contingent vs. interval-contingent sampling) (Aim 3); and compare the accuracy of estimating energy intake from saturated fat and added sugars using the optimized mEMDA app and sampling approach vs. interviewer-assisted 24HR in a controlled-feeding study. Future applications of the mEMDA app include: (1) reliably assessing momentary intakes of other foods or nutrients (e.g., fruit and vegetable intake, sodium), (2) integration with mobile intervention platforms to give real-time, dietary feedback to participants (3) concurrent-capturing meal context variables (e.g., social, environmental, and psycho-social variables) for future, just-in-time dietary interventions.
抽象的 过量摄入饱和脂肪和添加糖已被确定为早产的主要原因 2015 年至 2020 年,美国成年人每年约有 70 万人死亡。 《美国人膳食指南》建议将这些营养素限制在总能量摄入量的 10% 以下,以预防 实现这些公共卫生建议需要了解饱和脂肪的模式。 并增加糖的摄入量,以便可以制定更有效的饮食干预措施。 使用食物频率调查问卷或 24 小时饮食回忆来测量饱和脂肪和添加糖的摄入量 (24HR)。这些方法对用户来说是耗时且认知负担重的,对研究人员来说成本高昂。 也很容易出现回忆偏差和误报,部分原因是对一个人记忆的依赖 所提出的饮食评估方法的目的是长回忆间隔和份量估计错误。 通过生态瞬时评估 (EMA) 解决这些限制,并使用最新技术。 可以更新和改进 EMA 研究经常使用的抽样方法。 手机应用程序通过全天定期提供的简短、自动调查来评估事件。 因此,EMA 可以缩短召回间隔,以改善报告错误并减轻用户和研究人员的负担 迄今为止,移动 EMA 饮食评估方法 (mEMDA) 已用于最大程度地提高生态有效性。 研究尚未针对具体研究进行系统开发或优化。 该项目将代表第一个研究质量的、基于 EMA 的全自动移动设备。 在最近的试点工作中,我们展示了 mEMDA 的潜在用途。 进行移动调查以及网络辅助 24 小时来估计预定义零食的摄入量。 拟议项目的目标是系统地开发和测试 mEMDA 应用程序和采样方法 准确估计不同人群中饱和脂肪和添加糖的摄入量为此,我们将得出结论。 具有文化和人口代表性的食品和饮料清单,占大多数 (>70%) 使用最近的 NHANES 数据(目标 1)确定美国饮食中的饱和脂肪和添加糖; 以用户为中心设计 mEMDA 应用程序和分析平台,使用视觉食物图像来估计份量 和营养分析能力(目标 2);确定最佳的 mEMDA 采样方法(事件相关与随机事件) 间隔偶然抽样)(目标 3);并比较估计饱和脂肪能量摄入量的准确性 并使用优化的 mEMDA 应用程序和抽样方法与访谈员协助的 24 小时添加糖 mEMDA 应用程序的未来应用包括:(1) 可靠地评估瞬时情况。 其他食物或营养素的摄入量(例如,水果和蔬菜的摄入量、钠),(2)与移动相结合 向参与者提供实时饮食反馈的干预平台 (3) 同时捕获膳食背景 未来及时饮食干预的变量(例如社会、环境和心理社会变量)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Susan Schembre其他文献

Susan Schembre的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Susan Schembre', 18)}}的其他基金

Mobile Ecological Momentary Diet Assessment: A Low Burden, Ecologically-Valid Approach to Measuring Dietary Intake in Near-Real Time
移动生态瞬时饮食评估:一种低负担、生态有效的近实时测量膳食摄入量的方法
  • 批准号:
    10593785
  • 财政年份:
    2022
  • 资助金额:
    $ 65.23万
  • 项目类别:
Mobile Ecological Momentary Diet Assessment: A Low Burden, Ecologically-Valid Approach to Measuring Dietary Intake in Near-Real Time
移动生态瞬时饮食评估:一种低负担、生态有效的近实时测量膳食摄入量的方法
  • 批准号:
    10333367
  • 财政年份:
    2021
  • 资助金额:
    $ 65.23万
  • 项目类别:
Using hunger training to enhance weight loss and modulate cancer-related biomarkers in women at high risk for breast cancer: a pilot study
使用饥饿训练来增强乳腺癌高危女性的减肥效果并调节癌症相关生物标志物:一项试点研究
  • 批准号:
    9386469
  • 财政年份:
    2017
  • 资助金额:
    $ 65.23万
  • 项目类别:

相似国自然基金

基于动态信息的深度学习辅助设计成人脊柱畸形手术方案的研究
  • 批准号:
    82372499
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
SMC4/FoxO3a介导的CD38+HLA-DR+CD8+T细胞增殖在成人斯蒂尔病MAS发病中的作用研究
  • 批准号:
    82302025
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
单核细胞产生S100A8/A9放大中性粒细胞炎症反应调控成人Still病发病及病情演变的机制研究
  • 批准号:
    82373465
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
SERPINF1/SRSF6/B7-H3信号通路在成人B-ALL免疫逃逸中的作用及机制研究
  • 批准号:
    82300208
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
  • 批准号:
    82302160
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Developing Real-world Understanding of Medical Music therapy using the Electronic Health Record (DRUMMER)
使用电子健康记录 (DRUMMER) 培养对医学音乐治疗的真实理解
  • 批准号:
    10748859
  • 财政年份:
    2024
  • 资助金额:
    $ 65.23万
  • 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
  • 批准号:
    10749539
  • 财政年份:
    2024
  • 资助金额:
    $ 65.23万
  • 项目类别:
The neural underpinnings of speech and nonspeech auditory processing in autism: Implications for language
自闭症患者言语和非言语听觉处理的神经基础:对语言的影响
  • 批准号:
    10827051
  • 财政年份:
    2024
  • 资助金额:
    $ 65.23万
  • 项目类别:
Computational and neural signatures of interoceptive learning in anorexia nervosa
神经性厌食症内感受学习的计算和神经特征
  • 批准号:
    10824044
  • 财政年份:
    2024
  • 资助金额:
    $ 65.23万
  • 项目类别:
Identifying and testing a tailored strategy to achieve equity in blood pressure control in PACT
确定并测试量身定制的策略,以在 PACT 中实现血压控制的公平性
  • 批准号:
    10538513
  • 财政年份:
    2023
  • 资助金额:
    $ 65.23万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了