Molecular Mechanisms of Fructose-induced Colorectal Cancer Cell Survival
果糖诱导结直肠癌细胞存活的分子机制
基本信息
- 批准号:10548829
- 负责人:
- 金额:$ 57.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-10 至 2026-12-31
- 项目状态:未结题
- 来源:
- 关键词:AdultBindingBiochemicalBiological AssayCell CountCell DensityCell HypoxiaCell SurvivalCellsCellular Metabolic ProcessChemicalsClinical ResearchColonColorectal CancerConsumptionDataDevelopmentDietary FactorsDoseDrug DesignDrug TargetingEatingEnsureEnzyme KineticsEnzymesExposure toFoodFructoseFutureGene ActivationGenerationsGenesGeneticGenetic ModelsGlucoseGoalsGrowthHumanHypoxiaIncidenceIngestionIntakeIntestinesIsoenzymesIsotopesKetohexokinaseKineticsLinkMalignant NeoplasmsMass Spectrum AnalysisMeasuresMediatorMetabolicMetabolic syndromeMetabolismModalityModelingMolecularMusMutationNutrientObesityOralOrganOrganoidsOxygenPatientsPhysiologyPlacebosPlayProcessProspective, cohort studyProtein BiochemistryProtein IsoformsProteinsPublic HealthPublicationsPyruvate KinaseRecombinant ProteinsRecombinantsRoleScienceStructureSucroseTestingTimeTracerTransactivationTumor PromotionVariantWomancancer cellclinical developmentcolon cancer cell linecolorectal cancer progressioncolorectal cancer riskcombatcostdietaryexperimental studyfructose-1-phosphatehypoxia inducible factor 1improvedinhibitorintestinal adenomamenmetabolomicsmicrobiotamiddle agemortalitymouse modelmutantnew therapeutic targetnovel therapeuticspharmacologicpre-clinicalprogramssmall moleculesugartumortumor growthtumor metabolism
项目摘要
Project Summary
Clear associations have been established between the food we eat and the development and progression of
colorectal cancer (CRC). For example, the consumption of fructose increases the risk for CRC development
and CRC-specific mortality. However, the mechanism underlying this association is unknown. We have shown
that moderate daily exposure to oral high fructose corn syrup (HFCS, a mix of fructose and glucose) leads to
larger and more aggressive intestinal adenomas in mice. These effects were absent in mice with genetic
deficiency of ketohexokinase (KHK), the enzyme that converts fructose to fructose 1-phosphate (F1P). A
metabolomic analysis of these tumors showed that F1P is highly abundant following HFCS exposure, and this
increase correlates with a reduction in pyruvate kinase (PK) activity. Therefore, we hypothesize that F1P, the
product of KHK, enhances tumor growth by acting as an allosteric inhibitor of PK to promote anabolic
metabolism and cell survival. We will test this hypothesis using mouse physiology and organ metabolism, cell
and human organoid culture, and recombinant protein biochemistry. In Aim 1, we will genetically and
pharmacologically manipulate the M2 isozyme of PK (PKM2) in mice to interrogate its role as a mediator of
HFCS-induced tumor growth. In Aim 2, we will define the mechanistic linkage between fructose exposure and
cancer cell survival. We have found that cells in culture do not grow faster when exposed to fructose, however
we observed a significant improvement in cell viability, especially under conditions of high cell density and
hypoxia with fructose in the media. Therefore, we hypothesize that F1P inhibits PKM2 to promote hypoxic cell
survival. We will test this hypothesis using cell and organoid culture models exposed to fructose and hypoxia.
We will genetically and pharmacologically manipulate KHK and PKM2 expression and activity in these models
to determine the specific effects of these proteins on cell metabolism and survival. In Aim 3, we will assess the
effects of F1P on recombinant PK isoforms with a particular focus on PKM2. We hypothesize that fructose-
derived F1P binds to and inhibits PKM2. We will perform biochemical activity and structural assays to
determine the kinetic parameters and oligomeric state of PK isoforms in the presence of F1P. These
experiments will reveal the molecular mechanisms of how F1P binds and inhibits PKM2. Together, these aims
will change our fundamental understanding of how fructose alters tumor cell metabolism, define the
fructose/F1P/PKM2 axis as a metabolic vulnerability of CRC, and provide pre-clinical evidence for PKM2
activators as a novel therapeutic modality to combat CRC.
项目概要
我们所吃的食物与身体的发育和进展之间已经建立了明确的联系
结直肠癌(CRC)。例如,摄入果糖会增加结直肠癌发生的风险
和 CRC 特异性死亡率。然而,这种关联背后的机制尚不清楚。我们已经展示了
每天适度接触口服高果糖玉米糖浆(HFCS,果糖和葡萄糖的混合物)会导致
小鼠肠道腺瘤更大、更具侵袭性。这些效应在具有遗传基因的小鼠中不存在
酮己糖激酶 (KHK) 缺乏,这种酶将果糖转化为果糖 1-磷酸 (F1P)。一个
这些肿瘤的代谢组学分析表明,HFCS 暴露后 F1P 含量很高,这
增加与丙酮酸激酶(PK)活性的降低相关。因此,我们假设 F1P
KHK 的产品,通过作为 PK 的变构抑制剂促进合成代谢来促进肿瘤生长
新陈代谢和细胞存活。我们将利用小鼠生理学和器官代谢、细胞
和人类类器官培养,以及重组蛋白生物化学。在目标 1 中,我们将通过遗传和
在小鼠中药理学操纵 PK (PKM2) 的 M2 同工酶以探究其作为介导的作用
HFCS 诱导的肿瘤生长。在目标 2 中,我们将定义果糖暴露与
癌细胞存活。我们发现,当暴露于果糖时,培养中的细胞不会生长得更快,但是
我们观察到细胞活力显着提高,特别是在高细胞密度和
介质中存在果糖缺氧。因此,我们推测F1P抑制PKM2促进细胞缺氧
生存。我们将使用暴露于果糖和缺氧的细胞和类器官培养模型来检验这一假设。
我们将从遗传和药理学角度操纵这些模型中的 KHK 和 PKM2 表达和活性
确定这些蛋白质对细胞代谢和存活的具体影响。在目标 3 中,我们将评估
F1P 对重组 PK 同工型的影响,特别关注 PKM2。我们假设果糖-
衍生的 F1P 结合并抑制 PKM2。我们将进行生化活性和结构测定
确定 F1P 存在下 PK 亚型的动力学参数和寡聚状态。这些
实验将揭示 F1P 如何结合和抑制 PKM2 的分子机制。这些目标共同实现
将改变我们对果糖如何改变肿瘤细胞代谢的基本理解,定义
果糖/F1P/PKM2轴作为CRC的代谢脆弱性,并为PKM2提供临床前证据
激活剂作为对抗结直肠癌的新型治疗方式。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marcus DaSilva Goncalves其他文献
Marcus DaSilva Goncalves的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marcus DaSilva Goncalves', 18)}}的其他基金
Combination Therapies Targeting Insulin Signaling in Endometrial Cancer
子宫内膜癌中针对胰岛素信号传导的联合疗法
- 批准号:
10637167 - 财政年份:2023
- 资助金额:
$ 57.3万 - 项目类别:
The role of PKM2 in dietary lipid absorption and fructose-induced obesity
PKM2 在膳食脂质吸收和果糖诱导的肥胖中的作用
- 批准号:
10612965 - 财政年份:2022
- 资助金额:
$ 57.3万 - 项目类别:
Molecular Mechanisms of Fructose-induced Colorectal Cancer Cell Survival
果糖诱导结直肠癌细胞存活的分子机制
- 批准号:
10366296 - 财政年份:2022
- 资助金额:
$ 57.3万 - 项目类别:
The Role of Hypoketonemia in the Cancer Anorexia-Cachexia Syndrome
低酮血症在癌症厌食恶病质综合征中的作用
- 批准号:
10222611 - 财政年份:2018
- 资助金额:
$ 57.3万 - 项目类别:
相似国自然基金
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:
利用分子装订二硫键新策略优化改造α-芋螺毒素的研究
- 批准号:82104024
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
CST蛋白复合体在端粒复制中对端粒酶移除与C链填补调控的分子机制研究
- 批准号:31900521
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Wdr47蛋白在神经元极化中的功能及作用机理的研究
- 批准号:31900503
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
ID1 (Inhibitor of DNA binding 1) 在口蹄疫病毒感染中作用机制的研究
- 批准号:31672538
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
相似海外基金
Molecular Mechanisms Underlying Cytoneme Formation by Sonic Hedgehog-Producing Cells
Sonic Hedgehog 产生细胞形成细胞因子的分子机制
- 批准号:
10678288 - 财政年份:2023
- 资助金额:
$ 57.3万 - 项目类别:
Function and Mechanism of the Intercalated Disc Protein XinB in Cardiomyocyte Proliferation and Cardiac Regeneration
闰盘蛋白XinB在心肌细胞增殖和心脏再生中的作用及机制
- 批准号:
10681642 - 财政年份:2023
- 资助金额:
$ 57.3万 - 项目类别:
Mitochondrial mechanisms and signaling in manganese exposure
锰暴露中的线粒体机制和信号传导
- 批准号:
10734614 - 财政年份:2023
- 资助金额:
$ 57.3万 - 项目类别:
Genetic and biophysical analysis of morphogen gradient formation
形态素梯度形成的遗传和生物物理分析
- 批准号:
10723239 - 财政年份:2023
- 资助金额:
$ 57.3万 - 项目类别:
Generation and characterization of a Cre-Lox regulated transgenic zebrafish model of SBMA
Cre-Lox 调节的 SBMA 转基因斑马鱼模型的生成和表征
- 批准号:
10784254 - 财政年份:2023
- 资助金额:
$ 57.3万 - 项目类别: