Wrestling stress: role of ufm1 modification in pathological cardiac remodeling
摔跤应激:ufm1 修饰在病理性心脏重塑中的作用
基本信息
- 批准号:10543533
- 负责人:
- 金额:$ 38.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-01-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:AblationAgingAnimalsBindingBinding ProteinsBiochemicalBiological ProcessCardiacCardiac MyocytesCardiomyopathiesCell physiologyCessation of lifeDataDevelopmentDilated CardiomyopathyDimerizationDiseaseEmbryoEmbryonic DevelopmentEndoplasmic ReticulumEnzymesEventFibroblastsFoundationsFunctional disorderGenetic PolymorphismGenetically Engineered MouseGoalsHeartHeart DiseasesHeart failureHematopoiesisHomeostasisHospitalizationHumanInterventionKnowledgeLigaseMediatingModelingModificationMolecularMolecular TargetMusMyocardial dysfunctionPathogenesisPathogenicityPathologicPhysiologicalPilot ProjectsPost-Translational Protein ProcessingProteinsPublishingRNA SplicingRegulationReportingRepressionResearchRestRoleSignal TransductionStressStress Response SignalingTestingTimeTransducersUbiquitinUbiquitin Like ProteinsUbiquitinationWrestlingXBP1 geneattenuationbasebiological adaptation to stresscardioprotectioncell injuryclinical practicecombatendoplasmic reticulum stressheart functionhemodynamicshuman diseasein vivointestinal homeostasisloss of function mutationneuron developmentnovelpharmacologicpressurepreventresponserestorationtherapeutically effectivetooltranscriptomics
项目摘要
PROJECT SUMMARY
Protein post-translational modifications by ubiquitin and ubiquitin-like proteins represent vital mechanisms
regulating protein quality and function that are integral to cardiomyocyte function and homeostasis. The overall
goal of this proposal is to determine the function and underlying mechanism of a novel ubiquitin-like protein,
Ubiquitin-fold modifier 1 (Ufm1), in the heart. Ufmylation covalently conjugates Ufm1 to target substrates via a
Ufm1-specific E1 (Uba5)-E2 (Ufc1)-E3 (Ufl1) cascade. Through regulating the function of cellular proteins,
ufmylation controls multiple cellular processes and physiological events, and have been implicated in a number
of human diseases. Our pilot studies have for the first time identified a critical role for ufmylation in constraining
pathological cardiac remodeling and provided novel mechanistic linkages between ufmylation and endoplasmic
reticulum (ER) stress response. Ufmylation is dysregulated in cardiomyopathic hearts. Inhibition of ufmylation
via targeted ablation of the E3 Ufm1 ligase 1 (Ufl1) in the heart caused cardiomyopathy during ageing and
promoted propensity to heart failure in response to hemodynamic stress. ER stress coincided with the
progression of cardiomyopathy in these mice, and pharmacological attenuation of ER stress ameliorated cardiac
dysfunction following pressure overload in Ufl1-deficient hearts. Furthermore, Ufl1 controls the expression of
Ufm1 binding protein 1 (Ufbp1), an ER-resident Ufm1 target. Depletion of Ufbp1 diminished Xbp-1 splicing,
blunted Xbp-1s signaling and aggravated ER stress-induced cell injury, recapitulating most aspects of Ufl1
depletion. Moreover, ER stress promotes the binding of Ufbp1 to IRE1α, a key ER stress transducer that
activates cardioprotective Xbp-1s signaling. These data collectively suggest that Ufbp1 acts downstream of Ufl1
to protect CMs against pathogenic insults and is a crucial regulator of IRE1a/Xbp-1s signaling in cardiomyocytes.
Therefore, this proposal is to test the hypothesis that ufmylation protects against pathological cardiac remodeling
by targeting Ufbp1 to activate the adaptive ER stress response in cardiomyocytes. To test this hypothesis, Aim
1 will define the pathophysiological roles of Ufbp1 in the heart; Aim 2 will identify molecular bases of how
ufmylation activates the adaptive ER stress response signaling in cardiomyocytes; Aim 3 will elucidate the
functional importance of Ufbp1 ufmylation in activating IRE1a/Xbp-1s signaling and limiting cellular damage in
response to stress. The proposed study is the first to target protein ufmylation in a model of cardiac failure and
will employ unique tools including three new genetically-engineered mouse models to provide translational
significance. Completion of this project will establish a novel role of post-translational modification (ufmylation)
in the regulation of cardiac function and suggest new molecular targets for exploitation in the treatment of heart
disease.
项目概要
泛素和泛素样蛋白的蛋白质翻译后修饰代表重要机制
调节心肌细胞功能和稳态不可或缺的蛋白质质量和功能。
该提案的目标是确定一种新型泛素样蛋白的功能和潜在机制,
心脏中的泛素折叠修饰剂 1 (Ufm1) 通过共价键将 Ufm1 与靶底物结合。
Ufm1特异性E1(Uba5)-E2(Ufc1)-E3(Ufl1)级联通过调节细胞蛋白的功能,
ufmylation 控制多种细胞过程和生理事件,并与许多
我们的试点研究首次确定了 ufmylation 在抑制人类疾病方面的关键作用。
病理性心脏重塑并提供了 ufmylation 和内质之间的新机制联系
心肌病心脏中网状 (ER) 应激反应失调。
通过靶向消融心脏中的 E3 Ufm1 连接酶 1 (Ufl1),导致衰老过程中的心肌病
ER应激反应与心力衰竭的倾向一致。
这些小鼠心肌病的进展以及内质网应激的药理学减弱可改善心脏功能
Ufl1 缺陷心脏中压力超负荷后的功能障碍此外,Ufl1 控制着
Ufm1 结合蛋白 1 (Ufbp1),一种 ER 驻留 Ufm1 靶标,Ufbp1 的耗尽会减少 Xbp-1 剪接,
Xbp-1s 信号减弱和 ER 应激诱导的细胞损伤加剧,概括了 Ufl1 的大部分方面
此外,内质网应激会促进 Ufbp1 与 IRE1α 的结合,IRE1α 是一种关键的内质网应激传感器。
激活心脏保护性 Xbp-1s 信号传导 这些数据共同表明 Ufbp1 在 Ufl1 下游发挥作用。
保护 CM 免受致病性损伤,并且是心肌细胞中 IRE1a/Xbp-1s 信号传导的重要调节因子。
因此,本提案旨在检验 ufmylation 可以预防病理性心脏重塑的假设
为了验证这一假设,Aim 团队通过靶向 Ufbp1 来激活心肌细胞中的适应性 ER 应激反应。
1 将定义 Ufbp1 在心脏中的病理生理学作用;目标 2 将确定其作用的分子基础;
ufmylation 激活心肌细胞中的适应性 ER 应激反应信号;目标 3 将阐明
Ufbp1 ufmylation 在激活 IRE1a/Xbp-1s 信号传导和限制细胞损伤中的功能重要性
拟议的研究是第一个针对心力衰竭模型中的蛋白质乌酰化的研究。
将采用独特的工具,包括三种新的基因工程小鼠模型来提供转化
该项目的完成将确立翻译后修饰(ufmylation)的新作用。
调节心脏功能并提出用于治疗心脏疾病的新分子靶标
疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jie Li其他文献
Jie Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jie Li', 18)}}的其他基金
Accessing and Expanding Natural Products Chemical Diversity by Big-data Analysis and Biosynthetic Investigation
通过大数据分析和生物合成研究获取和扩大天然产物化学多样性
- 批准号:
10714466 - 财政年份:2023
- 资助金额:
$ 38.5万 - 项目类别:
Gut microbial metabolites sulfonolipids mediate high fat diet-induced intestinal inflammation
肠道微生物代谢物磺脂介导高脂肪饮食引起的肠道炎症
- 批准号:
10531456 - 财政年份:2021
- 资助金额:
$ 38.5万 - 项目类别:
Wrestling stress: role of ufm1 modification in pathological cardiac remodeling
摔跤应激:ufm1 修饰在病理性心脏重塑中的作用
- 批准号:
10331005 - 财政年份:2020
- 资助金额:
$ 38.5万 - 项目类别:
Wrestling stress: role of ufm1 modification in pathological cardiac remodeling
摔跤应激:ufm1 修饰在病理性心脏重塑中的作用
- 批准号:
9887887 - 财政年份:2020
- 资助金额:
$ 38.5万 - 项目类别:
Gut microbial metabolites sulfonolipids mediate high fat diet-induced intestinal inflammation
肠道微生物代谢物磺脂介导高脂肪饮食引起的肠道炎症
- 批准号:
10534725 - 财政年份:2012
- 资助金额:
$ 38.5万 - 项目类别:
相似国自然基金
纳米稀土CeO2在土壤-动物体系中的形态转化、累积分布及毒性作用机制
- 批准号:41877500
- 批准年份:2018
- 资助金额:62.0 万元
- 项目类别:面上项目
miR-34c在保护高糖诱导的VSMCs早衰并延缓糖尿病血管老化与钙化中的作用及机制
- 批准号:81770833
- 批准年份:2017
- 资助金额:56.0 万元
- 项目类别:面上项目
研究细胞/组织器官衰老与机体衰老关联机制的条件性敲入小鼠模型的建立与分析
- 批准号:81571374
- 批准年份:2015
- 资助金额:120.0 万元
- 项目类别:面上项目
缝隙连接蛋白26在老年性耳聋中的表达及其甲基化作用机制研究
- 批准号:81500795
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
改善年龄老化导致下肢新生血管生成障碍的实验研究
- 批准号:81070257
- 批准年份:2010
- 资助金额:30.0 万元
- 项目类别:面上项目
相似海外基金
Defining the molecular and anatomical basis of the blood-olfactory barrier (BOB)
定义血嗅屏障(BOB)的分子和解剖学基础
- 批准号:
10723087 - 财政年份:2023
- 资助金额:
$ 38.5万 - 项目类别:
Preclinical assessment of a novel systemic drug candidate for osteoarthritic pain
治疗骨关节炎疼痛的新型全身候选药物的临床前评估
- 批准号:
10642544 - 财政年份:2023
- 资助金额:
$ 38.5万 - 项目类别:
Perception of Dead Conspecifics modulates neural signaling and lifespan in Caenorhabditis elegans
对死亡同种的感知调节秀丽隐杆线虫的神经信号和寿命
- 批准号:
10828478 - 财政年份:2023
- 资助金额:
$ 38.5万 - 项目类别:
Investigating the role of CSF production and circulation in aging and Alzheimer's disease
研究脑脊液产生和循环在衰老和阿尔茨海默病中的作用
- 批准号:
10717111 - 财政年份:2023
- 资助金额:
$ 38.5万 - 项目类别: