Abscission regulation of corticogenesis
皮质生成的脱落调节
基本信息
- 批准号:10544030
- 负责人:
- 金额:$ 41.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-01 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAgeApicalApoptosisAreaBiologicalBiological AssayBiologyBrainCancer cell lineCell CycleCell LineCell MaintenanceCell PolarityCell divisionCellsCellular AssayCiliaComplexCouplingDataDaughterDefectDevelopmentDissociationEpilepsyExcisionGene DeletionGene MutationGenesGeneticGeometryHealthImageIn VitroIndividualKnowledgeLeadLinkLong-Term EffectsMalignant NeoplasmsMediatingMethodsMicrocephalyMicrotubulesMissionMolecularMorphologyMothersMutant Strains MiceMutationNational Institute of Neurological Disorders and StrokeNeurodevelopmental DisorderNeuronsOrganOrganellesOutcomePaperPathway interactionsPhenotypePositioning AttributeProbabilityProcessPublic HealthRegulationReporterResearchSignal PathwaySignal TransductionStructureSurfaceSystemTP53 geneTestingTimeTissuesVentricularWNT Signaling Pathwayapical membraneautism spectrum disorderbeta cateninbrain malformationbrain sizecandidate identificationcell typecilium biogenesisdaughter cellexperimental studyin vivoinnovationmosaic analysismosaic lossmutantnerve stem cellnervous system disorderneurodevelopmentneuroregulationnovelstemstem cell divisionstem cell expansionstem cellsstemnesstooltranscriptome sequencingtransmission process
项目摘要
Abstract: In order for the brain to develop with proper size and structure, neural stem cells (NSCs) at early
ages must make proliferative divisions and maintain their stemness to expand the stem cell pool, but then
switch to undergo neurogenic divisions at the correct time to create neurons. However, the mechanism of
this fate choice from remaining an NSC early on, to later choosing to exit the cell cycle and become a
neuron, is still poorly understood. The last step of cell division is abscission, which severs the daughter from
the mother cell. Abscission occurs during the time when the fate decision is made, and at the apical
membrane, where many fate signals are located. We developed methods and tools to quantitatively analyze
abscission in cortical NSCs, in vivo and in vitro. We found that abscission is not simply necessary to cut cells
apart and keep them alive. Rather, we made the surprising discovery that both abscission duration and
remnants of abscission (midbody remnants) are developmentally regulated, changing as development
proceeds. Furthermore, we found that a small-brained mouse mutant with altered abscission duration has a
reduced proportion of proliferative NSC divisions. These data led to our central hypothesis that changes in
abscission duration and midbody remnant persistence can shift NSC daughter cells fate choices as
development proceeds. We will test this hypothesis through the use of innovative genetic and cell biological
approaches, on single NSC divisions and whole tissue analyses. We will utilize two mouse mutants that
perturb abscission specifically, affecting duration and midbody remnants differentially. We will carry out three
Specific Aims: 1) test whether abscission duration is correlated with daughter cell fate outcomes in vitro, 2)
dissect the primary and secondary effects of dysregulated abscission on cortical NSC daughter cell fates,
morphologies and lineage progression in vivo, and 3) investigate a candidate signaling mechanism at the
apical membrane that could link abscission regulation to stem cell maintenance. The contributions of the
proposed research will be to increase understanding of the fundamental question of how stem cells in
developing tissues maintain high proliferative capacity early and then reduce it later in favor of differentiated
daughter cell types. It will also elucidate how regulation of NSC divisions affect daughter cell fates,
structures, and subsequent divisions. These contributions will be significant because they will reveal novel
mechanisms and gene pathways that regulate how brain size and structure are controlled, and will elucidate
how specific alterations in NSC division mechanisms during development can lead to brain malformations, or
other neurodevelopment phenotypes.
摘要:为了使大脑发育成适当的大小和结构,神经干细胞(NSCs)在早期
年龄必须进行增殖分裂并保持其干性以扩大干细胞库,但随后
在正确的时间进行神经原性分裂以产生神经元。然而,其机制
这种命运选择从早期保留 NSC 到后来选择退出细胞周期并成为
神经元,目前仍知之甚少。细胞分裂的最后一步是脱落,这使女儿与
母细胞。脱落发生在命运决定的时期,在顶端
膜,许多命运信号位于此处。我们开发了定量分析的方法和工具
体内和体外皮质 NSC 的脱落。我们发现脱落不仅仅是切割细胞所必需的
分开并让他们活着。相反,我们得出了令人惊讶的发现,即脱落持续时间和
脱落残余物(中体残余物)受发育调节,随着发育而变化
收益。此外,我们发现,脱落持续时间改变的小脑小鼠突变体具有
增殖性 NSC 分裂的比例减少。这些数据引出了我们的中心假设:
脱落持续时间和中体残余持久性可以改变 NSC 子细胞的命运选择:
开发收益。我们将通过使用创新的遗传和细胞生物学来检验这一假设
方法,关于单个 NSC 分裂和整个组织分析。我们将利用两种小鼠突变体
特别扰乱离断,对持续时间和中体残余物产生不同的影响。我们将开展三项
具体目标:1) 测试脱落持续时间是否与体外子细胞命运结果相关,2)
剖析失调脱落对皮质 NSC 子细胞命运的主要和次要影响,
体内形态学和谱系进展,3) 研究候选信号传导机制
顶膜可以将脱落调节与干细胞维持联系起来。的贡献
拟议的研究将增进对干细胞如何在体内发挥作用这一基本问题的理解。
发育中的组织早期保持高增殖能力,然后降低以利于分化
子细胞类型。它还将阐明 NSC 分裂的调节如何影响子细胞的命运,
结构和后续部门。这些贡献将意义重大,因为它们将揭示新颖的
调节大脑大小和结构如何控制的机制和基因途径,并将阐明
发育过程中 NSC 分裂机制的特定改变如何导致大脑畸形,或
其他神经发育表型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NOELLE D DWYER其他文献
NOELLE D DWYER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NOELLE D DWYER', 18)}}的其他基金
Brain development phenotyping of IMPC lethal mutant mice
IMPC致死突变小鼠的大脑发育表型
- 批准号:
10428657 - 财政年份:2020
- 资助金额:
$ 41.28万 - 项目类别:
Brain development phenotyping of IMPC lethal mutant mice
IMPC致死突变小鼠的大脑发育表型
- 批准号:
10029899 - 财政年份:2020
- 资助金额:
$ 41.28万 - 项目类别:
Brain development phenotyping of IMPC lethal mutant mice
IMPC致死突变小鼠的大脑发育表型
- 批准号:
10240639 - 财政年份:2020
- 资助金额:
$ 41.28万 - 项目类别:
Roles of Cytokinesis in Polarized Neural Stem Cell Divisions and Brain Growth
细胞分裂在极化神经干细胞分裂和大脑生长中的作用
- 批准号:
9250230 - 财政年份:2013
- 资助金额:
$ 41.28万 - 项目类别:
Roles of Cytokinesis in Polarized Neural Stem Cell Divisions and Brain Growth
细胞分裂在极化神经干细胞分裂和大脑生长中的作用
- 批准号:
8500876 - 财政年份:2013
- 资助金额:
$ 41.28万 - 项目类别:
Roles of Cytokinesis in Polarized Neural Stem Cell Divisions and Brain Growth
细胞分裂在极化神经干细胞分裂和大脑生长中的作用
- 批准号:
8829347 - 财政年份:2013
- 资助金额:
$ 41.28万 - 项目类别:
Roles of Cytokinesis in Polarized Neural Stem Cell Divisions and Brain Growth
细胞分裂在极化神经干细胞分裂和大脑生长中的作用
- 批准号:
8640218 - 财政年份:2013
- 资助金额:
$ 41.28万 - 项目类别:
Molecular Mechanisms of Thalamocortical Development
丘脑皮质发育的分子机制
- 批准号:
6832855 - 财政年份:2004
- 资助金额:
$ 41.28万 - 项目类别:
Molecular Mechanisms of Thalamocortical Development
丘脑皮质发育的分子机制
- 批准号:
6707985 - 财政年份:2004
- 资助金额:
$ 41.28万 - 项目类别:
相似国自然基金
跨尺度年龄自适应儿童头部模型构建与弥漫性轴索损伤行为及表征研究
- 批准号:52375281
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
多氯联苯与机体交互作用对生物学年龄的影响及在衰老中的作用机制
- 批准号:82373667
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
年龄相关性黄斑变性治疗中双靶向药物递释策略及其机制研究
- 批准号:82301217
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
GNAS介导OPN4-PLCβ4-TRPC6/7通路调节自主感光视网膜神经节细胞在年龄相关性黄斑变性中的作用机制研究
- 批准号:82301229
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
无线供能边缘网络中基于信息年龄的能量与数据协同调度算法研究
- 批准号:62372118
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Project 3 - Mechanisms of extra- and intra-cellular calcification
项目3——细胞外和细胞内钙化的机制
- 批准号:
10628930 - 财政年份:2023
- 资助金额:
$ 41.28万 - 项目类别:
Elucidating the Roles of the Membrane-Binding Proteins ciBAR1 and ciBAR2 in Ciliogenesis
阐明膜结合蛋白 ciBAR1 和 ciBAR2 在纤毛发生中的作用
- 批准号:
10677252 - 财政年份:2023
- 资助金额:
$ 41.28万 - 项目类别:
Elucidating the Roles of the Membrane-Binding Proteins ciBAR1 and ciBAR2 in Ciliogenesis
阐明膜结合蛋白 ciBAR1 和 ciBAR2 在纤毛发生中的作用
- 批准号:
10677252 - 财政年份:2023
- 资助金额:
$ 41.28万 - 项目类别:
InflammaGut: a drug-screenable co-culture system using gut-associated lymphocytes and autologous primary human gut epithelium that reports inflammation
InflammaGut:一种可药物筛选的共培养系统,使用肠道相关淋巴细胞和自体原代人类肠道上皮来报告炎症
- 批准号:
10616555 - 财政年份:2022
- 资助金额:
$ 41.28万 - 项目类别:
The role of TTC7A in apical lumen formation and polarized trafficking in the intestinal epithelium
TTC7A 在肠上皮顶腔形成和极化运输中的作用
- 批准号:
10464502 - 财政年份:2022
- 资助金额:
$ 41.28万 - 项目类别: