Vascular calcification and atherosclerosis
血管钙化和动脉粥样硬化
基本信息
- 批准号:10542822
- 负责人:
- 金额:$ 37.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-01 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:AblationAccelerationAdverse effectsAlkaline PhosphataseAmericanAortaAreaArterial Fatty StreakArteriesAtherosclerosisAttentionBenignBiological AvailabilityBone remodelingBreast MicrocalcificationCardiovascular DiseasesCardiovascular systemCause of DeathCellsCessation of lifeCholesterolComplementComputer ModelsComputer softwareCoronary ArteriosclerosisCoupledDataDevelopmentDiseaseElasticityEndothelial CellsEndotheliumFamilial HypercholesterolemiaFutureGeneral PopulationGeneticGenetic RecombinationGeometryGoalsHeart DiseasesHistologicHumanHydroxyapatitesHyperglycemiaHypertensionInfusion proceduresLabelLeft Ventricular Ejection FractionLipidsLipoproteinsLiquid substanceLow Density Lipoprotein ReceptorLow-Density LipoproteinsMacrophageMeasuresMediatingMethodsMicroscopicModelingMonitorMorbidity - disease rateMotionMusNoduleOralOutcomePathogenesisPatientsPhasePhenotypePhysicsPlasmaPlayPreparationPublic HealthResolutionRiskRisk FactorsRoleRuptureStructureSurfaceTestingTextureTherapeuticTimeTissuesUnited StatesVascular calcificationVirulence FactorsVisualizationWorkathero susceptiblebonecalcificationcardiovascular disorder riskcardiovascular risk factorcare costscell typeexperimental studyhemodynamicshuman modelimage guidedimprovedimproved outcomein vivoin vivo ModelmicroCTmodifiable riskmortalitymouse modelmutantnovelnovel therapeuticsosteogenicoverexpressionparticlephosphatase inhibitorpreservationresponserisk stratificationshear stressside effectsmall moleculetargeted treatmenttherapeutic developmenttherapeutic targetthrombotic complicationsuptake
项目摘要
Project Summary/Abstract
Cardiovascular disease (CVD) is the leading cause of death in the U.S., with the annual total cost of care
estimated at $351 billion. Vascular calcification is a nontraditional CVD risk factor associated with a significant
increase in morbidity and mortality in the general population. Unlike other established risk factors, it is not yet
regarded as a modifiable factor. However, there is emerging evidence that it may drive the pathogenesis of
atherosclerosis and play an important role in the regression of atherosclerotic plaques. Our data demonstrated
that overexpression of tissue-nonspecific alkaline phosphatase (TNAP) in endothelial cells accelerated
coronary atherosclerosis in hyperlipidemic mice, while the TNAP inhibitor SBI-425 reduced manifestations of
coronary artery disease in this model. Subendothelial microcalcification was frequently observed in the internal
elastic lamina in mice and in human arteries and was predicted by computational fluid structure interaction
(FSI) modeling to redistribute wall shear stress on the endothelium. The idea that calcification can promote
atherosclerosis was further supported by an observation of increased low density lipoprotein (LDL) uptake by
endothelial cells cultured on surfaces textured with hydroxyapatite particles. More evidence from mouse
models showed that TNAP activity in macrophages was sufficient to increase calcification during progression
of atherosclerosis and interfere with plaque regression, leading to maladaptive dilation of the aortic root.
We hypothesize that calcification is a modifiable factor in atherosclerosis and that inhibiting TNAP-mediated
vascular calcification may have therapeutic value. The overarching goal of this project is to gain a better
understanding of the role of calcification during atherosclerotic lesion initiation, progression, and resolution,
and to determine whether calcification is an active pathogenic factor in atherosclerosis or a mere, likely benign,
secondary response. The project will use computational and in vivo models to delineate hemodynamic
mechanism by which subendothelial microcalcifications increases retention of LDL in the arterial wall. The
effects of the conditional genetic ablation of TNAP in macrophages or an increase of TNAP activity in plasma
will then be tested in a mouse model of familial hypercholesterolemia. Because regression of calcified plaques
can lead to eccentric aortic root remodeling during lipid lowering, we will interrogate whether inhibition of TNAP
with SBI-425 could suppress calcification and alleviate maladaptive remodeling of the aortic root in a mouse
model during reversal of atherosclerosis. In testing TNAP inhibition for its therapeutic utility for atherosclerotic
calcification, we will keep close attention on potential bone side effects by monitoring bone microarchitecture
using micro-computed tomography. The results of this project will establish whether calcification is a
modifiable risk factor in CVD and determine whether systemic TNAP inhibition or elimination of
osteogenic TNAP-expressing macrophages is a viable therapeutic approach in atherosclerosis. The
results of this study will help guide future development of novel therapeutics for this prevalent disease.
项目概要/摘要
心血管疾病 (CVD) 是美国的首要死亡原因,每年的总护理费用
估计为3510亿美元。血管钙化是一种非传统 CVD 危险因素,与显着相关
一般人群发病率和死亡率增加。与其他已确定的风险因素不同,目前还没有
视为可修改因素。然而,有新的证据表明它可能驱动以下疾病的发病机制:
动脉粥样硬化并在动脉粥样硬化斑块的消退中发挥重要作用。我们的数据证明
内皮细胞中组织非特异性碱性磷酸酶(TNAP)的过度表达加速
高脂血症小鼠的冠状动脉粥样硬化,而 TNAP 抑制剂 SBI-425 则减少了冠状动脉粥样硬化的表现
该模型中的冠状动脉疾病。内皮下微钙化经常在内部观察到
小鼠和人类动脉中的弹性层,并通过计算流体结构相互作用进行预测
(FSI) 建模以重新分配内皮上的壁剪切应力。钙化可以促进的想法
观察到低密度脂蛋白(LDL)摄取增加进一步支持动脉粥样硬化
在羟基磷灰石颗粒纹理的表面上培养内皮细胞。来自小鼠的更多证据
模型表明巨噬细胞中的 TNAP 活性足以在进展过程中增加钙化
动脉粥样硬化并干扰斑块消退,导致主动脉根部适应不良扩张。
我们假设钙化是动脉粥样硬化的一个可改变因素,并且抑制 TNAP 介导的钙化
血管钙化可能有治疗价值。该项目的总体目标是获得更好的
了解钙化在动脉粥样硬化病变发生、进展和消退过程中的作用,
并确定钙化是否是动脉粥样硬化的活性致病因素,或者仅仅是一种可能是良性的,
二次响应。该项目将使用计算和体内模型来描述血流动力学
内皮下微钙化增加动脉壁中 LDL 滞留的机制。这
巨噬细胞中 TNAP 条件性基因消除或血浆中 TNAP 活性增加的影响
然后将在家族性高胆固醇血症小鼠模型中进行测试。因为钙化斑块消退
降脂过程中会导致主动脉根部偏心重塑,我们将探讨是否抑制TNAP
与 SBI-425 一起使用可以抑制小鼠主动脉根部的钙化并减轻适应不良的重塑
逆转动脉粥样硬化过程中的模型。测试 TNAP 抑制对动脉粥样硬化的治疗作用
钙化,我们将通过监测骨微结构密切关注潜在的骨骼副作用
使用微型计算机断层扫描。该项目的结果将确定钙化是否是一种
CVD 中可改变的危险因素,并确定是否全身性 TNAP 抑制或消除
表达成骨 TNAP 的巨噬细胞是动脉粥样硬化的一种可行的治疗方法。这
这项研究的结果将有助于指导未来针对这种流行疾病的新疗法的开发。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Olga V. Savinova其他文献
Effects of niacin and omega-3 fatty acids on HDL-apolipoprotein A-I exchange in subjects with metabolic syndrome
烟酸和 omega-3 脂肪酸对代谢综合征受试者 HDL-载脂蛋白 A-I 交换的影响
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:3.7
- 作者:
Mark S. Borja;Bradley Hammerson;Chongren Tang;Litzy Juarez;Olga V. Savinova;William S. Harris;Michael N. Oda;Gregory C Shearer - 通讯作者:
Gregory C Shearer
Olga V. Savinova的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Olga V. Savinova', 18)}}的其他基金
相似国自然基金
基于增广拉格朗日函数的加速分裂算法及其应用研究
- 批准号:12371300
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
肠菌源性丁酸上调IL-22促进肠干细胞增殖加速放射性肠损伤修复的机制研究
- 批准号:82304065
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于肌红蛋白构象及其氧化还原体系探究tt-DDE加速生鲜牛肉肉色劣变的分子机制
- 批准号:32372384
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于联邦学习自动超参调整的数据流通赋能加速研究
- 批准号:62302265
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
M2 TAMs分泌的OGT通过促进糖酵解过程加速肝细胞癌恶性生物学行为的机制研究
- 批准号:82360529
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Evaluation of peripheral nerve stimulation as an alternative to radiofrequency ablation for facet joint pain
周围神经刺激替代射频消融治疗小关节疼痛的评估
- 批准号:
10734693 - 财政年份:2023
- 资助金额:
$ 37.01万 - 项目类别:
Deciphering molecular mechanisms controlling age-associated uterine adaptabilityto pregnancy
破译控制与年龄相关的子宫妊娠适应性的分子机制
- 批准号:
10636576 - 财政年份:2023
- 资助金额:
$ 37.01万 - 项目类别:
Minimally Invasive High Intensity Therapeutic Ultrasound for the Treatment of Obstructive Hypertrophic Cardiomyopathy
微创高强度超声治疗梗阻性肥厚型心肌病
- 批准号:
10603460 - 财政年份:2023
- 资助金额:
$ 37.01万 - 项目类别:
Metabolic impairment plays a critical role in radiation-induced T cell immune dysfunction
代谢损伤在辐射诱导的 T 细胞免疫功能障碍中起着关键作用
- 批准号:
10668368 - 财政年份:2022
- 资助金额:
$ 37.01万 - 项目类别:
Metabolic impairment plays a critical role in radiation-induced T cell immune dysfunction
代谢损伤在辐射诱导的 T 细胞免疫功能障碍中起着关键作用
- 批准号:
10474738 - 财政年份:2022
- 资助金额:
$ 37.01万 - 项目类别: