DeepCOPD: Development and Implementation of Deep Learning to Predict and Prevent COPD Health Care Encounters
DeepCOPD:开发和实施深度学习来预测和预防慢性阻塞性肺病医疗保健遭遇
基本信息
- 批准号:10542393
- 负责人:
- 金额:$ 74.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-12-20 至 2025-11-30
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAcuteAdoptionAdverse eventAmbulatory CareAutomated AnnotationCalibrationCaregiversCaringChronicChronic Obstructive Pulmonary DiseaseClinicClinicalCodeCommunitiesConsumptionControlled VocabularyDataDetectionDevelopmentDiagnosisDimensionsDiseaseDisease ProgressionEarly identificationElectronic Health RecordEventFinancial HardshipFutureHealthHealth PersonnelHealth PolicyHealth systemHealthcareHealthcare SystemsHomeHospitalizationHumanIndividualIngestionMachine LearningMaintenanceManualsMapsMedicalMethodsModelingNational Heart, Lung, and Blood InstituteNatural Language ProcessingNatureOutcomeOutpatientsOxygenOxygen Therapy CarePatient CarePatient Care ManagementPatientsPerformancePersonsPhysiciansProceduresProcessProviderRecording of previous eventsResearchResourcesRiskRisk FactorsStructureSymptomsSystemTechniquesTextTimeUpdateValidationVisitVisualizationbiomedical informaticsclinical applicationclinical careclinical implementationcostdata streamsdata visualizationdeep learningdeep learning algorithmdeep learning modeldiscrete dataend stage diseasefunctional statushealth care deliveryhealth care service utilizationhigh riskhospital readmissionimprovedlearning strategymachine learning methodpredictive modelingpredictive toolspreventprogramsprospectivereadmission risksocialstructured datasupport toolstoolunstructured datausabilityuser centered designweb site
项目摘要
In the US, ~24 million persons live with COPD, half undiagnosed, and ~150,000 die of COPD
annually. COPD causes over 700,000 US hospitalizations and costs nearly $50 billion per year. The
human and financial burdens of COPD could likely be reduced if disease progression and other
adverse events could be anticipated, enabling caregivers to focus finite resources on at-risk patients.
We propose to create a decision-support tool that integrates biomedical informatics with advanced
machine learning (ML) and deep learning (DL) algorithms to predict acute and chronic healthcare
encounters (hospital admissions, readmissions, and ED encounters) and major disease progression
events (home oxygen therapy) for outpatients with COPD. Such a tool would confer immediate clinical
benefits and accelerate research on COPD disease progression and treatment. Predictive modeling is
widely used to identify high-risk patients for care management in COPD and other disorders, with a
strong emphasis on readmission risk. However, extant techniques are not sufficiently accurate and do
not identify the specific nature of likely future medical events, estimate time-to-event, and specifically
forecast medical encounters and disease progression events for individuals with COPD. Recent
research in disease progression modeling support the application of DL and other ML methods to
electronic health records (EHRs) to predict aspects of health history. EHRs contain both readily
accessible structured data (e.g., lab results in well-defined fields) and unstructured texts such as
physician’s notes. Unstructured texts contain a great deal of clinical information, but this information is
laborious to access; impeding its routine use in research and the clinic. This has motivated attempts to
use natural language processing (NLP) methods to automate annotation. We will apply NLP to identify
symptoms, treatments, procedures, diagnoses, social risk factors, and functional status from clinical
notes, expanding the data available from EHRs far beyond the usual coded variables. Also, and
distinctively, we will carry out a stepped-wedge clinical implementation of the proposed predictive tool
and evaluate its performance, a first for ML and DL prediction of COPD health events. Therefore, we
propose four Specific Aims: AIM 1: Transform EHR data streams to provision patient-level feature sets
for ML and DL consumption. AIM 2: Develop a set of ML and DL models to predict the time-to-event
for home oxygen therapy initiation and healthcare encounters among patients with COPD. AIM 3: To
develop and implement a prospective performance surveillance and calibration maintenance system to
maintain the final Aim 2 model for each outcome. AIM 4: Evaluate adoption and usability of the
DeepCOPD toolkit in near-realtime clinical use in two healthcare systems. The application is
responsive to the NHLBI IDEA2Health (NOT-HL-19-712).
在美国,约 2400 万人患有慢性阻塞性肺病,其中一半未得到诊断,约 15 万人死于慢性阻塞性肺病
慢性阻塞性肺病每年导致超过 70 万人住院,花费近 500 亿美元。
如果疾病进展和其他方面的进展,慢性阻塞性肺病的人力和经济负担可能会减少
不良事件是可以预见的,使护理人员能够将有限的资源集中在高危患者身上。
我们建议创建一个将生物医学信息学与先进技术相结合的决策支持工具
用于预测急慢性医疗保健的机器学习 (ML) 和深度学习 (DL) 算法
遭遇(入院、再入院和急诊室遭遇)和主要疾病进展
为慢性阻塞性肺病门诊患者提供紧急事件(家庭氧疗),这样的工具可以立即进行临床治疗。
益处并加速 COPD 疾病进展和治疗的研究。
广泛用于识别慢性阻塞性肺病和其他疾病的高危患者进行护理管理,具有
然而,现有的技术不够准确并且确实如此。
无法识别未来可能发生的医疗事件的具体性质,无法估计事件发生的时间,特别是
预测 COPD 患者近期的医疗遭遇和疾病进展事件。
疾病进展建模研究支持深度学习和其他机器学习方法的应用
电子健康记录 (EHR) 可以轻松预测健康史的各个方面。
可访问的结构化数据(例如,定义明确的字段中的实验室结果)和非结构化文本,例如
非结构化文本包含大量临床信息,但这些信息是
难以获取;阻碍了其在研究和临床中的常规使用。
使用自然语言处理(NLP)方法来自动化注释我们将应用NLP来识别。
临床症状、治疗、手术、诊断、社会风险因素和功能状态
指出,电子病历中可用的数据远远超出了通常的编码变量。
与众不同的是,我们将对所提出的预测工具进行阶梯式临床实施
并评估其性能,这是 COPD 健康事件的 ML 和 DL 预测的首次。
四项提出具体目标: 目标 1:转变 EHR 数据流以提供患者级别的功能集
针对 ML 和 DL 消费 AIM 2:开发一组 ML 和 DL 模型来预测事件发生时间。
慢性阻塞性肺病 (COPD) 患者的家庭氧疗开始和医疗保健遭遇 目标 3:
开发并实施前瞻性性能监视和校准维护系统
维护每个结果的最终目标 2 模型:评估目标的采用和可用性。
DeepCOPD 工具包在两个医疗保健系统中近实时临床使用。
响应 NHLBI IDEA2Health (NOT-HL-19-712)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeremiah R Brown其他文献
Measuring Neurite Dynamics in Co-culture Using IncuCyte ZOOM ® Live-content Imaging Platform and NeuroLight Red TM Fluorescent Label
使用 IncuCyte ZOOM ® 实时内容成像平台和 NeuroLight Red TM 荧光标签测量共培养中的神经节动态
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Jeremiah R Brown;T. Garay;S. Alcantara;Lauren T McGillicuddy;Nevine Holtz;J. Rauch;Dyke;McEwen;V. Groppi;T. Dale;O. McManus - 通讯作者:
O. McManus
Short-range axonal/dendritic transport by myosin-V: A model for vesicle delivery to the synapse.
肌球蛋白-V 的短程轴突/树突运输:囊泡递送至突触的模型。
- DOI:
10.1002/neu.10317 - 发表时间:
2004-02-05 - 期刊:
- 影响因子:0
- 作者:
Jeremiah R Brown;P. Stafford;G. Langford - 通讯作者:
G. Langford
Jeremiah R Brown的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeremiah R Brown', 18)}}的其他基金
The BASIC trial: Improving implementation of evidence-based approaches and surveillance to prevent bacterial transmission and infection
BASIC 试验:改进循证方法和监测的实施,以防止细菌传播和感染
- 批准号:
10316780 - 财政年份:2021
- 资助金额:
$ 74.16万 - 项目类别:
The BASIC trial: Improving implementation of evidence-based approaches and surveillance to prevent bacterial transmission and infection
BASIC 试验:改进循证方法和监测的实施,以防止细菌传播和感染
- 批准号:
10434139 - 财政年份:2021
- 资助金额:
$ 74.16万 - 项目类别:
The BASIC trial: Improving implementation of evidence-based approaches and surveillance to prevent bacterial transmission and infection
BASIC 试验:改进循证方法和监测的实施,以防止细菌传播和感染
- 批准号:
10618922 - 财政年份:2021
- 资助金额:
$ 74.16万 - 项目类别:
DeepCOPD: Development and Implementation of Deep Learning to Predict and Prevent COPD Health Care Encounters
DeepCOPD:开发和实施深度学习来预测和预防慢性阻塞性肺病医疗保健遭遇
- 批准号:
10382949 - 财政年份:2021
- 资助金额:
$ 74.16万 - 项目类别:
IMPROVE AKI: A Cluster-Randomized Trial of Team-Based Coaching Interventions to IMPROVE Acute Kidney Injury
改善 AKI:基于团队的教练干预改善急性肾损伤的整群随机试验
- 批准号:
10402326 - 财政年份:2018
- 资助金额:
$ 74.16万 - 项目类别:
Information Extraction from EMRs to Predict Readmission following Acute Myocardial Infarction
从 EMR 中提取信息以预测急性心肌梗死后的再入院
- 批准号:
9282479 - 财政年份:2016
- 资助金额:
$ 74.16万 - 项目类别:
Novel Biomarkers to Predict Readmission in Pediatric and Adult Heart Surgery
预测儿童和成人心脏手术再入院的新型生物标志物
- 批准号:
8759821 - 财政年份:2014
- 资助金额:
$ 74.16万 - 项目类别:
Novel Biomarkers to Predict Readmission in Pediatric and Adult Heart Surgery
预测儿童和成人心脏手术再入院的新型生物标志物
- 批准号:
9098842 - 财政年份:2014
- 资助金额:
$ 74.16万 - 项目类别:
相似国自然基金
巨噬细胞Nogo-B通过FABP4/IL-18/IL-18R调控急性肝衰竭的分子机制研究
- 批准号:82304503
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
α7nAChR激动剂通过PGC-1α和HO-1调控肾小管上皮细胞线粒体的质和量进而改善脓毒症急性肾损伤的机制研究
- 批准号:82372172
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于解郁散热“把好气分关”探讨代谢-炎症“开关”A2BR在急性胰腺炎既病防变中的作用与机制
- 批准号:82374256
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
RacGAP1介导细胞核-线粒体对话在急性肾损伤中促进肾小管上皮细胞能量平衡的作用机制研究
- 批准号:82300771
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
开窍寒温配伍调控应激颗粒铁离子富集水平抗急性缺血性卒中铁死亡损伤的机制研究
- 批准号:82374209
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Music4Pain Network: A research network to advance the study of mechanisms underlying the effects of music and music-based interventions on pain.
Music4Pain Network:一个研究网络,旨在推进音乐和基于音乐的疼痛干预措施的影响机制的研究。
- 批准号:
10764417 - 财政年份:2023
- 资助金额:
$ 74.16万 - 项目类别:
Transfer of vaccine-induced immunity from immunocompetent stem cell donor as antiviral immunotherapy to protect high-risk transplant recipients from cytomegalovirus reactivation
将来自免疫活性干细胞供体的疫苗诱导的免疫力转移作为抗病毒免疫疗法,以保护高危移植受者免受巨细胞病毒再激活
- 批准号:
10659635 - 财政年份:2023
- 资助金额:
$ 74.16万 - 项目类别:
Behavioral Economic and Staffing Strategies To Increase Adoption of the ABCDEF Bundle in the ICU (BEST-ICU)
提高 ICU 中 ABCDEF 捆绑包采用率的行为经济和人员配置策略 (BEST-ICU)
- 批准号:
10650089 - 财政年份:2023
- 资助金额:
$ 74.16万 - 项目类别:
Augmenting Pharmacogenetics with Multi-Omics Data and Techniques to Predict Adverse Drug Reactions to NSAIDs
利用多组学数据和技术增强药物遗传学,预测 NSAID 的药物不良反应
- 批准号:
10748642 - 财政年份:2023
- 资助金额:
$ 74.16万 - 项目类别: