Epithelial Regeneration in the Adult Oviduct

成人输卵管上皮再生

基本信息

  • 批准号:
    10542901
  • 负责人:
  • 金额:
    $ 3.59万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-01-01 至 2022-06-30
  • 项目状态:
    已结题

项目摘要

Project Summary Despite the prevalence of female reproductive pathologies, such as endometriosis and ectopic pregnancy, there is shockingly little known about the molecular or cell biology of the organs involved. This proposal focuses on the oviduct, because the oviduct serves as the conduit between the ovary and uterus, and is the site of mammalian fertilization. While the oviduct is a critical site for female fertility, how oviduct physiology is regulated at the genetic, molecular, and cellular level is almost completely unknown. Like all female reproductive organs, the oviduct undergoes recurrent tissue morphogenesis in response to the cyclical hormonal changes of the estrous cycle, which is the fundamental hormonal regulator that allows all mammals, including humans, to become pregnant. The oviduct is lined by a single layer of epithelium which is composed of multiciliated and secretory cells. The multiciliated cells (MCCs) project hundreds of motile cilia from their apical surface, where they beat together and are hypothesized to capture the ovulated oocyte and sweep it down the oviduct. The MCCs remodel dramatically during the estrous cycle: during the first half of the cycle, the percentage of MCCs increases and peaks at ovulation, after which the percentage of MCCs decreases significantly. While oviduct epithelial remodeling is known to occur, it is completely unclear how these remodeling events are regulated. Does oviduct MCC remodeling occur via apoptosis or deciliation? Do stem cells participate in these remodeling events? In multiciliated tissues, cilia beat together because the tissue is planar polarized. How is planar cell polarity of the oviduct lost and regained throughout the estrous cycle? Finally, how are these remodeling events regulated at the genetic level? This proposal seeks to explore oviduct MCC remodeling using a combination of mouse genetics, high resolution imaging of cell shapes and behaviors, in vivo imaging of oviduct fluid flow, and unbiased genomic analysis. The work proposed here will provide new insights into the turnover of oviduct multiciliated cells and the genomic control of oviduct epithelial homeostasis (Aim 1), and the establishment of planar cell polarity in the oviduct (Aim 2) during the estrous cycle. Understanding the genetic, molecular, and cellular basis of MCC remodeling of the oviduct during the estrous cycle holds therapeutic promise for treating female infertility and improving the success rates of in vitro fertilization.
项目概要 尽管子宫内膜异位症和宫外孕等女性生殖疾病普遍存在,但 令人震惊的是,人们对所涉及器官的分子或细胞生物学知之甚少。该提案的重点是 输卵管,因为输卵管是卵巢和子宫之间的管道,是 哺乳动物受精。虽然输卵管是女性生育的关键部位,但输卵管生理学是如何调节的 在遗传、分子和细胞水平上几乎完全未知。与所有女性生殖器官一样, 输卵管响应周期性激素变化而经历反复的组织形态发生 发情周期,这是基本的激素调节剂,使包括人类在内的所有哺乳动物能够 受孕。输卵管内衬有单层上皮,该上皮由多纤毛和 分泌细胞。多纤毛细胞 (MCC) 从其顶端表面投射出数百个活动纤毛,其中 它们一起跳动,并被假设捕获排卵的卵母细胞并将其扫入输卵管。这 MCC 在发情周期期间发生显着重塑:在周期的前半段,MCC 的百分比 增加并在排卵时达到峰值,此后 MCC 的百分比显着下降。而输卵管 已知上皮重塑会发生,但完全不清楚这些重塑事件是如何调节的。 输卵管 MCC 重塑是通过细胞凋亡还是去纤毛发生的?干细胞参与这些重塑吗 事件?在多纤毛组织中,纤毛一起跳动,因为该组织是平面极化的。平面电池怎么样 输卵管极性在整个动情周期中丢失和恢复?最后,这些改造活动怎么样 在基因水平上受到调控?该提案旨在探索结合以下方法进行输卵管 MCC 重塑: 小鼠遗传学、细胞形状和行为的高分辨率成像、输卵管流体流动的体内成像,以及 无偏见的基因组分析。这里提出的工作将为输卵管周转提供新的见解 多纤毛细胞和输卵管上皮稳态的基因组控制(目标 1),以及建立 发情周期期间输卵管中的平面细胞极性(目标 2)。了解遗传、分子和 动情周期期间 MCC 输卵管重塑的细胞基础为治疗带来了治疗希望 女性不孕症,提高体外受精的成功率。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Elle Roberson其他文献

Elle Roberson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Elle Roberson', 18)}}的其他基金

Epithelial Regeneration in the Adult Oviduct
成人输卵管上皮再生
  • 批准号:
    9541144
  • 财政年份:
    2019
  • 资助金额:
    $ 3.59万
  • 项目类别:

相似国自然基金

异源砧木对马尾松顶端优势影响机理研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    35 万元
  • 项目类别:
    地区科学基金项目
FGF8通过Ras/MEK/ERK信号通路调控apical ES结构影响精子生成的机制研究
  • 批准号:
    81801519
  • 批准年份:
    2018
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
拟南芥DNA拓扑异构酶TOP1α通过对细胞分裂素基因的表观调控影响RAM维持的分子机制研究
  • 批准号:
    31401039
  • 批准年份:
    2014
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
信号转导系统通过MAP18蛋白介导调控微丝骨架动态影响拟南芥根毛细胞顶端生长
  • 批准号:
    31371352
  • 批准年份:
    2013
  • 资助金额:
    75.0 万元
  • 项目类别:
    面上项目
缺硼影响植物成长的机理研究
  • 批准号:
    39570428
  • 批准年份:
    1995
  • 资助金额:
    10.0 万元
  • 项目类别:
    面上项目

相似海外基金

Volumetric analysis of epithelial morphogenesis with high spatiotemporal resolution
高时空分辨率上皮形态发生的体积分析
  • 批准号:
    10586534
  • 财政年份:
    2023
  • 资助金额:
    $ 3.59万
  • 项目类别:
Identification and characterization of novel functions for the Usher proteins in the inner ear
内耳 Usher 蛋白新功能的鉴定和表征
  • 批准号:
    10677948
  • 财政年份:
    2023
  • 资助金额:
    $ 3.59万
  • 项目类别:
GPCR signaling during embryonic organ formation
胚胎器官形成过程中的 GPCR 信号传导
  • 批准号:
    10584164
  • 财政年份:
    2023
  • 资助金额:
    $ 3.59万
  • 项目类别:
Human Ocular Surface Electrophysiology
人眼表面电生理学
  • 批准号:
    10591279
  • 财政年份:
    2023
  • 资助金额:
    $ 3.59万
  • 项目类别:
Characterizing Wnt Signaling Pathways in Axon Guidance
轴突引导中 Wnt 信号通路的特征
  • 批准号:
    10815443
  • 财政年份:
    2023
  • 资助金额:
    $ 3.59万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了