GPCR signaling during embryonic organ formation
胚胎器官形成过程中的 GPCR 信号传导
基本信息
- 批准号:10584164
- 负责人:
- 金额:$ 42.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-01 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:3-hydroxy-3-methylglutaryl-coenzyme AActinsAdultAffectAnimalsApicalAutonomic nervous systemCell PolarityCell ShapeCell SurvivalCell membraneCell surfaceCellsCentral Nervous SystemCollaborationsComplementConflict (Psychology)CuesDestinationsDevelopmentDevelopmental ProcessDictyosteliumDiseaseDistantDrosophila garnet proteinDrosophila genomeDrosophila genusDrug TargetingEmbryoEmbryonic DevelopmentEnzymesEpitheliumErinaceidaeEventExtracellular MatrixExtravasationF-ActinFDA approvedFogsG Protein-Coupled Receptor SignalingG-Protein-Coupled ReceptorsGenesGeneticGerm CellsGlutaminaseHormonesHumanImmuneImmunityInflammationInjuryLifeLigandsLightLinkMediatingMembraneMolecularMolecular Mechanisms of ActionMorphogenesisNeoplasm MetastasisNeurotransmittersOdorsOrganOrganismOrganogenesisOxidoreductasePathway interactionsPatternPharmaceutical PreparationsPhenotypePheromonePhotonsPlayPolymersPositioning AttributeProcessProteinsRNA InterferenceReceptor ActivationReportingRoleSalivary GlandsSignal PathwaySignal TransductionSiteSmell PerceptionSmogSomatic CellSourceStimulusStructure of primordial sex cellSystemTaste PerceptionTestingTimeTissuesTubeVisualWingWorkcell motilityconstrictioncostgenome wide screenin vivoinsightlipid phosphate phosphatasemigrationneuroblastnovelpolymerizationpressurereceptorreceptor bindingreceptor functionrecruitresponsesmoothened signaling pathwaytissue/cell culturetool
项目摘要
G-protein coupled receptors (GPCRs) are critical for almost every aspect of animal life. These
proteins are embedded in the cell membrane and allow us to sense and respond to light, smells,
and taste. GPCRs also control responses in both our central and autonomic nervous systems,
and they regulate both inflammation and immunity. GPCRs control cell migration for normal
development and during cancer metastasis. Indeed, approximately 34% of FDA-approved drugs
target GPCRs. Nonetheless, despite decades of study, many GPCRs have no known function,
their ligands remain unidentified, and the pathways through which they elicit distinct cellular
responses remain mostly uncharacterized. Here, we propose to take the first steps toward
understanding the roles of GPCRs during development in the experimental system of the
Drosophila embryo, which has numerous advantages in terms of visual accessibility, an
extensive armamentarium of genetic tools, and relatively low cost.
We begin with an analysis of the Drosophila GPCR Tre1, which has been implicated in germ
cell (GC) navigation and survival, extravasation of immune cell to sites of injury, and polarization
of neuroblasts. We have recently reported that non-canonical Hedgehog signaling works
through the Tre1 receptor to control GC navigation, resolving a long-standing conflict regarding
the role of Hh in this process and revealing a novel pathway downstream of Tre1 activation. In
the first aim, we uncover the molecular and cellular mechanisms through which each step of this
pathway is mediated – from receptor binding to actin polymerization. We ask if and how other
genes that affect GC migration work through this pathway to repel GCs (in the case of the
Wunen lipid phosphate phosphatases) or attract GCs (in the case of HMGCoA reductase). Tre1
is also expressed in the forming salivary gland (SG), a tissue that, unlike GCs, migrates as a
fully polarized epithelial collective. We ask if Hh signaling and Tre1 also function in the SG for its
navigation and we ask if Tre1 function in this tissue complements or antagonizes the function of
another GPCR – Mthl5 – which is expressed in the SG at about the same time and that has also
been implicated in Hh signaling. Finally, we establish a pipeline to screen all of the GPCRs
encoded in the Drosophila genome and expressed in embryos for roles in the development of
either GCs or the SG. Our pilot screen has already identified two GPCRs with phenotypes
consistent with important functions, one gene with a potential role in GC survival and the other
with a potential role in regulating the SG extracellular matrix.
G 蛋白偶联受体 (GPCR) 对于动物生命的几乎各个方面都至关重要。
蛋白质嵌入细胞膜中,使我们能够感知光、气味、
GPCR 还控制我们的中枢神经系统和自主神经系统的反应,
它们调节炎症和免疫,控制细胞的正常迁移。
事实上,大约 34% 的 FDA 批准的药物。
然而,尽管经过数十年的研究,许多 GPCR 仍没有已知的功能,
它们的配体仍然未知,并且它们引发不同细胞的途径
在此,我们建议采取初步措施。
了解 GPCR 在实验系统发育过程中的作用
果蝇胚胎在视觉可及性方面具有许多优势,
遗传工具种类丰富,成本相对较低。
我们首先分析果蝇 GPCR Tre1,它与细菌有关
细胞 (GC) 导航和存活、免疫细胞外渗到损伤部位以及极化
我们最近报道了非典型的 Hedgehog 信号传导。
通过 Tre1 受体控制 GC 导航,解决了长期存在的冲突
Hh 在此过程中的作用并揭示了 Tre1 激活下游的新途径。
第一个目标是,我们揭示每一步的分子和细胞机制
途径是介导的——从受体结合到肌动蛋白聚合,我们询问是否以及如何其他。
影响 GC 迁移的基因通过此途径排斥 GC(在
Wunen 脂质磷酸酶)或吸引 GC(在 HMGCoA 还原酶的情况下)。
也在形成唾液腺 (SG) 中表达,该组织与 GC 不同,作为唾液腺迁移
我们询问 Hh 信号传导和 Tre1 是否也在 SG 中发挥作用。
导航,我们询问该组织中的 Tre1 功能是否补充或拮抗
另一个 GPCR – Mthl5 – 大约在同一时间在 SG 中表达,并且也已
最后,我们建立了一个筛选所有 GPCR 的管道。
在果蝇基因组中编码并在胚胎中表达,在发育中发挥作用
无论是 GC 还是 SG,我们的试点筛选已经鉴定出两个具有表型的 GPCR。
与重要功能一致,一个基因在 GC 存活中具有潜在作用,而另一个基因
具有调节 SG 细胞外基质的潜在作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Deborah J Andrew其他文献
Deborah J Andrew的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Deborah J Andrew', 18)}}的其他基金
Coordination of Growth and Form in the Embryonic Salivary Gland and Trachea
胚胎唾液腺和气管生长和形态的协调
- 批准号:
10453482 - 财政年份:2021
- 资助金额:
$ 42.7万 - 项目类别:
2015 Salivary Glands and Exocrine Biology Gordon Research Conference
2015年唾液腺与外分泌生物学戈登研究会议
- 批准号:
8830753 - 财政年份:2015
- 资助金额:
$ 42.7万 - 项目类别:
相似国自然基金
WDR1介导的肌动蛋白解聚动态平衡在小脑浦肯野细胞衰老性焦亡中的作用研究
- 批准号:32371053
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
肌动蛋白结合蛋白ANLN在胆汁淤积性肝损伤后肝再生过程中的作用及机制研究
- 批准号:82370648
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
肌动蛋白成核促进因子SHRC的结构和分子机制的研究
- 批准号:32301034
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肌动蛋白结合蛋白Xirp2介导基质刚度诱导心肌细胞肥大的力学生物学机制
- 批准号:12372314
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
染色质重塑因子肌动蛋白样6A在视网膜变性中的作用机制及干预研究
- 批准号:82371081
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Mechanical signaling through the nuclear membrane in lung alveolar health
通过核膜的机械信号传导影响肺泡健康
- 批准号:
10677169 - 财政年份:2023
- 资助金额:
$ 42.7万 - 项目类别:
Molecular Mechanisms Underlying Cytoneme Formation by Sonic Hedgehog-Producing Cells
Sonic Hedgehog 产生细胞形成细胞因子的分子机制
- 批准号:
10678288 - 财政年份:2023
- 资助金额:
$ 42.7万 - 项目类别:
Generation and characterization of a Cre-Lox regulated transgenic zebrafish model of SBMA
Cre-Lox 调节的 SBMA 转基因斑马鱼模型的生成和表征
- 批准号:
10784254 - 财政年份:2023
- 资助金额:
$ 42.7万 - 项目类别:
Volumetric analysis of epithelial morphogenesis with high spatiotemporal resolution
高时空分辨率上皮形态发生的体积分析
- 批准号:
10586534 - 财政年份:2023
- 资助金额:
$ 42.7万 - 项目类别:
ArpC3-mediated actin remodeling in insulin granule exocytosis and diabetes
ArpC3 介导的肌动蛋白重塑在胰岛素颗粒胞吐作用和糖尿病中的作用
- 批准号:
10583734 - 财政年份:2023
- 资助金额:
$ 42.7万 - 项目类别: