Single cell, genome wide dissection of dynamic transcription factor regulation
单细胞、全基因组动态转录因子调控的剖析
基本信息
- 批准号:10538121
- 负责人:
- 金额:$ 3.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-11 至 2025-07-10
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAutoimmune DiseasesBiomedical EngineeringBypassCell Fate ControlCell LineCellsChemicalsCuesDevelopmentDiseaseDisease ProgressionDissectionEnsureEnvironmentEukaryotic CellExposure toFibrinogenFluorescenceFluorescence MicroscopyFoundationsGene ExpressionGene Expression ProfileGene Expression RegulationGenesGenetic TranscriptionHela CellsHeterogeneityHumanImmune System DiseasesImmune responseIndividualInflammationKnock-outKnowledgeLeadLightMalignant NeoplasmsMapsMasksMeasurableMethodsModelingModernizationNF-Kappa B p65NF-kappa BNatureNuclearNuclear TranslocationPathway interactionsPatternPerceptionPhenotypePolymerase Chain ReactionPopulation HeterogeneityRELA geneRegulationResearchReverse TranscriptionSignal TransductionStimulusStretchingSumSystemTNF geneTechniquesTechnologyTherapeuticTranscriptional RegulationTumor SuppressionValidationWorkbasebiological systemscellular engineeringdifferential expressionenvironmental stressorexperienceextracellulargenome-wideinterestoptogeneticsp65programspromoterresponsesingle-cell RNA sequencingsynthetic biologytooltranscription factortranscriptometranscriptomicstransmission processwhole genome
项目摘要
PROJECT SUMMARY
Despite having limited sets of signaling components and number of genes, cells must be able to distinctly
respond to a large number of input signals, such as environmental stresses, as well as execute diverse gene
expression programs. It is vital that cells receive, transmit, filter, and act upon these signals accurately to trigger
the appropriate downstream gene response program, as dysregulation and aberrant signaling have important
implications in the initiation or progression of diseases such as immune disorders and cancer.
Specifically, a single transcription factor (TF) can respond to a wide variety of input signals by changing its
nuclear localization dynamics to activate specific promoters. However, the study of transcriptional dynamics is
limited to largely correlational relationships due to technical barriers such as cell-to-cell variability, pleotropic
effects of experimental perturbations, expression averages that mask heterogeneity, and fluorescence based
techniques that limit the number of measurable target genes. The central hypothesis of this work is that the
functional connections between TF dynamics and their downstream regulation of gene expression
programs can be identified and tuned by the integrated use of carefully characterized and controlled
optogenetic systems with single cell RNA sequencing (scRNAseq), increasing our understanding of
gene regulation in human cells for engineering and biomedical applications. NF-κB (p65/RELA), which
regulates hundreds of genes and is heavily implicated in immunological responses and cancer, will serve as the
model TF for our system.
To address this challenge and information gap, the proposed work will build upon a suite of sophisticated
tools developed in our lab to combine optogenetic based TF translocation with scRNAseq. We will establish a
robust, tightly controlled system and examine the genome wide effect of direct perturbations of NF-κB across
thousands of cells. Three main objectives will be targeted: Aim 1 will result in the development of a fully
controllable, optogenetic system to precisely regulate p65 translocation in HeLa cells by landing pad integration,
optimization of localization dynamics, and validation by reverse transcription quantitative polymerase chain
reaction of known target genes. Aim 2 will focus on determination of whole-genome gene transcriptomic profiles
and cell-to-cell heterogeneity in response to traditionally used, chemically stimulated p65 dynamics using
scRNAseq. By combining these two components, Aim 3 will directly control p65 dynamics with 15 distinct
optogenetic inputs and assess resultant single cell transcriptomic changes using scRNAseq. In sum, we aim to
provide an efficient, functional system to provide direct, causal relationships between TF dynamics and
gene expression in human cells and exact control in cellular engineering by leveraging complete control
of TF translocation through optogenetics, precise tools in mammalian synthetic biology, and transcriptome wide,
single cell gene expression profiles provided by scRNAseq.
项目概要
尽管信号成分和基因数量有限,但细胞必须能够清楚地
对大量输入信号(例如环境压力)做出反应,并执行不同的基因
细胞准确地接收、传输、过滤和作用这些信号以触发表达程序至关重要。
适当的下游基因反应程序,因为失调和异常信号传导具有重要意义
对免疫紊乱和癌症等疾病的发生或进展的影响。
具体来说,单个转录因子(TF)可以通过改变其转录因子来响应多种输入信号。
核定位动力学来激活特定的启动子然而,转录动力学的研究是。
由于技术障碍,例如细胞间变异性、多效性,仅限于很大程度上相关的关系
实验扰动、掩盖异质性的表达平均值以及基于荧光的影响
限制可测量目标基因数量的技术。这项工作的中心假设是
TF 动态及其下游基因表达调控之间的功能联系
可以通过综合使用仔细表征的程序来识别和调整程序
具有单细胞 RNA 测序 (scRNAseq) 的光遗传学系统,增加了我们对
人类细胞中的基因调控,用于工程和生物医学应用。
调节数百个基因,与免疫反应和癌症密切相关,将作为
我们系统的型号 TF。
为了应对这一挑战和信息差距,拟议的工作将建立在一套复杂的基础上
我们实验室开发的将基于光遗传学的 TF 易位与 scRNAseq 相结合的工具。
强大、严格控制的系统,并检查 NF-κB 直接扰动对全基因组的影响
将实现三个主要目标:目标 1 将导致开发一个完全的细胞。
可控光遗传学系统通过着陆垫整合精确调节 HeLa 细胞中的 p65 易位,
定位动力学优化,并通过逆转录定量聚合酶链进行验证
目标 2 将侧重于确定全基因组基因转录组谱。
以及细胞间异质性响应传统使用的化学刺激 p65 动力学
scRNAseq 通过结合这两个组件,Aim 3 将直接控制具有 15 个不同的 p65 动力学。
光遗传学输入并使用 scRNAseq 评估由此产生的单细胞转录组变化总而言之,我们的目标是
提供一个高效的、功能性的关系系统,以在 TF 动态和
人体细胞中的基因表达以及通过利用完全控制来精确控制细胞工程
通过光遗传学、哺乳动物合成生物学中的精确工具和转录组范围进行 TF 易位,
scRNAseq 提供的单细胞基因表达谱。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Leandra Caywood其他文献
Leandra Caywood的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Leandra Caywood', 18)}}的其他基金
Single cell, genome wide dissection of dynamic transcription factor regulation
单细胞、全基因组动态转录因子调控的剖析
- 批准号:
10665592 - 财政年份:2022
- 资助金额:
$ 3.38万 - 项目类别:
相似国自然基金
系统性红斑狼疮患者泌乳素对调节性B细胞的调控作用及其影响自身抗体分泌的研究
- 批准号:81803129
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
活性氧ROS在调节性B细胞分化中的作用及其对于自身免疫性疾病的影响
- 批准号:81771736
- 批准年份:2017
- 资助金额:56.0 万元
- 项目类别:面上项目
自身抗体1G3调控DDX5对血脑屏障通透性的影响及机制研究
- 批准号:81601428
- 批准年份:2016
- 资助金额:17.5 万元
- 项目类别:青年科学基金项目
miR-186参与Th17/Treg失衡及影响毛囊干细胞活化在重症斑秃中的机制研究
- 批准号:81673074
- 批准年份:2016
- 资助金额:70.0 万元
- 项目类别:面上项目
自身免疫性疾病相关炎症因子对CD8+ T细胞再次应答的影响
- 批准号:81072421
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
相似海外基金
Pathogenic T cells in discoid lupus erythematosus
盘状红斑狼疮中的致病性 T 细胞
- 批准号:
10664134 - 财政年份:2023
- 资助金额:
$ 3.38万 - 项目类别:
A First-in-class Topical Immunoregulatory Therapeutic for Psoriasis
一流的牛皮癣局部免疫调节疗法
- 批准号:
10820331 - 财政年份:2023
- 资助金额:
$ 3.38万 - 项目类别:
B Cell Biology in the Context of Infectious Diseases, Autoimmunity and B Cell Cancers
传染病、自身免疫和 B 细胞癌症背景下的 B 细胞生物学
- 批准号:
10683443 - 财政年份:2023
- 资助金额:
$ 3.38万 - 项目类别:
Therapy-induced cognitive impairment in a rat model of prostate cancer
前列腺癌大鼠模型中治疗引起的认知障碍
- 批准号:
10766874 - 财政年份:2023
- 资助金额:
$ 3.38万 - 项目类别:
Discovering miR6891-5p: guardian of XX allelic balance and barrier to Sjögren’s syndrome pathogenesis
发现 miR6891-5p:XX 等位基因平衡的守护者和干燥综合征发病机制的障碍
- 批准号:
10767679 - 财政年份:2023
- 资助金额:
$ 3.38万 - 项目类别: