Advanced neuroimaging of arousal-state transition network dynamics in the human brain
人脑唤醒状态转换网络动力学的高级神经成像
基本信息
- 批准号:10537447
- 负责人:
- 金额:$ 3.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-20 至 2024-09-19
- 项目状态:已结题
- 来源:
- 关键词:AddressAgingAlzheimer&aposs DiseaseAnimalsArousalArousal and Regulatory SystemsBasal GangliaBehaviorBehavioralBrainBrain StemBrain regionCell NucleusCognitiveComplexDataData AnalysesDiseaseElectroencephalographyElectrophysiology (science)FoundationsFunctional Magnetic Resonance ImagingFunctional disorderFutureGoalsHumanImageImaging TechniquesIndividualJointsKnowledgeLinkMeasuresMental DepressionMental disordersMethodsNeuroanatomyNeurologicPatternResolutionRoleSamplingScalp structureSchizophreniaSleepSleep disturbancesStructureTechniquesTestingThalamic NucleiThalamic structureTimeTrainingWakefulnessWorkbasal forebrainbasebehavioral responsecognitive functiondata acquisitionencephalographyhuman imagingimaging studyinnovationinterestlocus ceruleus structuremultimodal datamultimodalitynervous system disorderneural circuitneuroimagingneuropsychiatric disordernovelrelating to nervous systemskillsspatiotemporaltemporal measurement
项目摘要
PROJECT SUMMARY
Arousal regulatory systems are disrupted in a wide range of psychiatric and neurological disorders, yet
we know surprisingly little about the fundamental brain network mechanisms underlying transitions between the
sleep and wake arousal-states. Invasive animal studies have demonstrated the causal role of several deep-brain
regions including nuclei of the brainstem and thalamus in arousal from sleep, and recently, human functional
magnetic resonance imaging (fMRI) studies of arousal implicated such deep-brain regions as key contributors.
While we know shifts in brain rhythms, connectivity, and behavior accompany arousal-state transitions, how
brain-wide dynamics unfold across such key regions during this state-change remains unknown. Previous
studies have been limited by the spatiotemporal resolution necessary to capture whole-brain network dynamics
occurring at arousal. Invasive studies are limited by the number of regions they can record from simultaneously,
and traditional non-invasive methods lack the temporal resolution necessary to capture the fast dynamics
occurring at arousal. Our novel method will use encephalography (EEG) and behavioral response to detect
arousal-state changes combined with simultaneous fast fMRI (sample rate < 1 s) at 7 Tesla to measure deep-
brain activity in nuclei of the brainstem, individual nuclei of the thalamus, basal ganglia regions, and cortical
regions during human arousal from sleep. Preliminary data suggests that this fMRI acquisition method can detect
significant temporal differences in activity signatures between regions of interest. We hypothesize that activation
of the brainstem’s locus coeruleus, followed by a distinct activation sequence across thalamic nuclei and the
basal forebrain, will precede arousal, and deactivation of cortical regions will follow. We aim to build a
fundamental understanding of the basic network mechanisms supporting arousal-state transitions in humans
that will be necessary to ultimately understand how arousal regulatory system dynamics are altered in disorders.
Delineating such temporal network dynamics using fMRI will provide a more precise understanding of how the
brain switches between cognitive states by allowing us to link activity across dozens of subcortical nuclei
simultaneously. Identifying these network mechanisms in humans will also provide the opportunity for future
studies to identify fine-scale differences in neuropsychiatric disorders that was not previously possible.
项目概要
唤醒调节系统在多种精神和神经系统疾病中受到破坏,但
令人惊讶的是,我们对大脑网络之间转换的基本机制知之甚少。
睡眠和觉醒唤醒状态的侵入性动物研究已经证明了几种深部大脑的因果作用。
包括脑干和丘脑核在内的区域在从睡眠中觉醒时,最近,人类功能
对唤醒的磁共振成像(fMRI)研究表明,这些深部大脑区域是关键的贡献者。
虽然我们知道大脑节律、连通性和行为的变化伴随着唤醒状态的转变,但如何
在这种状态变化期间,这些关键区域的全脑展开动态仍然未知。
研究受到捕获全脑网络动态所需的时空分辨率的限制
发生在唤醒时的侵入性研究受到它们可以同时记录的区域数量的限制,
传统的非侵入性方法缺乏捕捉快速动态所需的时间分辨率
我们的新方法将使用脑电图(EEG)和行为反应来检测。
唤醒状态组合变化与 7 特斯拉同步快速 fMRI(采样率 < 1 秒),以测量深度
脑干核、丘脑单个核、基底神经节区域和皮质的大脑活动
初步数据表明,这种功能磁共振成像采集方法可以检测到人类从睡眠中醒来时的区域。
兴趣之间活动特征的显着区域时间差异是我们首创的。
脑干的蓝斑,随后是丘脑核团和丘脑核团的独特激活序列
基底前脑将先于唤醒,随后皮质区域失活。
对支持人类唤醒状态转变的基本网络机制的基本理解
这对于最终了解唤醒调节系统动态如何失调是必要的。
使用功能磁共振成像描绘这种时间网络动态将提供更准确的理解
大脑通过允许我们将数十个皮层下核的核活动联系起来来在认知状态之间切换
同时,识别人类的这些网络机制也将为未来提供机会。
旨在确定神经精神疾病的精细差异的研究,这在以前是不可能的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Beverly Setzer其他文献
Beverly Setzer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Beverly Setzer', 18)}}的其他基金
Advanced neuroimaging of arousal-state transition network dynamics in the human brain
人脑唤醒状态转换网络动力学的高级神经成像
- 批准号:
10712209 - 财政年份:2022
- 资助金额:
$ 3.78万 - 项目类别:
相似国自然基金
阿尔茨海默病高危风险基因加速认知老化的脑神经机制研究
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
β-羟丁酸通过hnRNP A1调控Oct4抑制星形胶质细胞衰老影响AD的发生
- 批准号:31900807
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
胰岛素抵抗导致神经元衰老的分子机制及在老年痴呆疾病中的作用研究
- 批准号:91849205
- 批准年份:2018
- 资助金额:200.0 万元
- 项目类别:重大研究计划
载脂蛋白E4基因加速认知老化的脑神经机制研究
- 批准号:31700997
- 批准年份:2017
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
慢性睡眠障碍引起阿尔茨海默病tau蛋白病理变化及其表观遗传学机制研究
- 批准号:81771521
- 批准年份:2017
- 资助金额:54.0 万元
- 项目类别:面上项目
相似海外基金
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
- 批准号:
10676358 - 财政年份:2024
- 资助金额:
$ 3.78万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 3.78万 - 项目类别:
Ultra-precision clinical imaging and detection of Alzheimers Disease using deep learning
使用深度学习进行超精密临床成像和阿尔茨海默病检测
- 批准号:
10643456 - 财政年份:2023
- 资助金额:
$ 3.78万 - 项目类别:
Chronic Pain and Risk of Alzheimer's-Related Neurodegeneration
慢性疼痛和阿尔茨海默病相关神经变性的风险
- 批准号:
10644253 - 财政年份:2023
- 资助金额:
$ 3.78万 - 项目类别: