Engineering Next-Generation Nanoparticles One Layer at a Time
一次一层地设计下一代纳米粒子
基本信息
- 批准号:10528938
- 负责人:
- 金额:$ 4.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AdsorptionAffectAntibodiesAntineoplastic AgentsArchitectureBindingBiologicalBiological AvailabilityCOVID-19 vaccineCancer ControlCancer ModelCellsCharacteristicsChargeChemistryClinicalCytoplasmDepositionDrug ControlsDrug Delivery SystemsDrug KineticsEffectivenessElectrostaticsEngineeringFDA approvedFilmFluorescence Resonance Energy TransferFormulationGoalsHalf-LifeHydrogen BondingImmunotherapeutic agentIn VitroInterleukin-12Ionic StrengthsKineticsKnowledgeLibrariesLiposomesMalignant NeoplasmsMalignant neoplasm of ovaryMediatingMentorsMethodsModelingModernizationModificationMolecular ConformationMonitorNucleic AcidsOncogenesOperative Surgical ProceduresPharmaceutical PreparationsPhasePolyethylene GlycolsPolymersPopulationPre-Clinical ModelPrevalenceProcessPropertyProteinsRadiationResearchResearch Project GrantsRiskSaltsSerumSerum ProteinsStructureSurfaceSystemTechniquesTherapeuticTimeTissuesToxic effectTransfectionTreatment EfficacyTumor TissueWaterWorkbasebiomaterial compatibilitycancer cellcancer immunotherapycancer therapycancer typechemotherapycrosslinkcytokinedelivery vehicledensitydesignethylene glycolexperienceextracellulargene therapyimmunogenicimmunoreactivityimprovedin vivomacromoleculenanomaterialsnanoparticlenext generationnucleic acid deliveryparticlepre-clinicalrational designreceptorsmall moleculespatiotemporalsuccesssymposiumtooltrendtumortumor microenvironmentuptake
项目摘要
Project Summary/Abstract
Cancer treatment currently relies on surgery, radiation, and systemic chemotherapy. While these techniques
have greatly improved cancer therapy, they also risk damaging healthy tissue and have incomplete elimination
of the cancer. The use of nanoparticles (NPs) as drug delivery vehicles may reduce these issues by specifically
accumulating in tumor tissue. Further NPs can improve the bioavailability of drugs, widening the range of
potential therapeutics for cancer treatment. Although there have been some successes in the NP field that led
to clinically approved formulations, most have relied on passive means of accumulation and depend on surface
conjugation with polyethylene glycol (PEG) chains. Unfortunately, passive accumulation may not benefit some
cancer types and recent wide-spread use of PEG in commercial products has led to prevalence of anti-PEG
antibodies in the population which risk reducing efficacy of PEG-based therapeutics. Accordingly, there is a great
need to engineer next-generation NPs with improved properties for cancer treatment without the use of PEG.
One promising NP system for cancer drug delivery is layer-by-layer (LbL) NPs which have shown great promise
in preclinical models of cancer as a delivery vehicle for small molecules, nucleic acids or macromolecules. LbL
consists of a simple assembly method involving the alternating adsorption of polymeric species from water onto
a substrate which can be mediated by electrostatics, hydrogen-bonding or other molecular interactions. This
process allows for facile surface modification of NPs which has been shown to enable cancer cell targeting and
to control subcellular localization. However, there is a dearth of knowledge on how to monitor and control the
disassembly of the LbL structure to improve the NP stability and enable precise spatiotemporal control of drug
delivery via LbL-NPs. During the F99 phase, I will explore how to modulate the layer architecture in layer-by-
layer (LbL) NPs. In this project, the effects of solution conditions during layering and other key layer
characteristics will be investigated. Particles will be loaded with interleukin-12, a potent immunostimulatory
protein, to evaluate treatment efficacy of optimized formulations in vitro and in an in vivo metastatic ovarian
cancer model. During the K00 phase, the focus will transition from systemic stability towards characterization of
cellular uptake and intracellular disassembly targeted at gene therapy for cancer treatment. Gene therapy has
had many new exciting breakthroughs in the last decades, but its use in cancer treatment has been limited due
to poor targeting and low transfection efficacy. I will design a library of NP formulations and characterize their
uptake and intracellular disassembly in vitro and in vivo to determine key NP properties that can modulate gene
therapy efficacy. Further, I will design and optimize nucleic acid combinations of new immunotherapeutic
constructs to deliver via the optimized gene therapy formulations.
项目概要/摘要
目前癌症治疗依赖于手术、放疗和全身化疗。虽然这些技术
极大地改善了癌症治疗,但它们也有损害健康组织的风险,并且消除不完全
的癌症。使用纳米粒子(NP)作为药物输送载体可以通过专门的方法减少这些问题
积聚在肿瘤组织中。进一步的纳米颗粒可以提高药物的生物利用度,扩大药物的范围
癌症治疗的潜在疗法。尽管在 NP 领域已经取得了一些成功,
对于临床批准的制剂,大多数依赖于被动积累方式并依赖于表面
与聚乙二醇(PEG)链缀合。不幸的是,被动积累可能不会让某些人受益
癌症类型和最近 PEG 在商业产品中的广泛使用导致抗 PEG 的流行
人群中的抗体可能会降低基于 PEG 的疗法的功效。据此,有一个很大的
需要设计具有改进特性的下一代纳米粒子,用于在不使用 PEG 的情况下治疗癌症。
用于癌症药物输送的一种有前景的纳米颗粒系统是层层(LbL)纳米颗粒,它已显示出巨大的前景
在癌症的临床前模型中作为小分子、核酸或大分子的递送载体。磅级
由一种简单的组装方法组成,涉及将聚合物物质从水中交替吸附到
可以通过静电、氢键或其他分子相互作用介导的基底。这
该过程可以轻松地对纳米粒子进行表面修饰,这已被证明能够实现癌细胞靶向和
控制亚细胞定位。然而,人们对如何监控和控制仍缺乏了解。
拆卸LbL结构以提高NP稳定性并实现药物的精确时空控制
通过 LbL-NP 进行交付。在F99阶段,我会探索如何逐层调制层架构——
层(LbL)NP。本工程中分层及其他关键层时溶液条件的影响
特征将被调查。颗粒将装载白细胞介素 12,这是一种有效的免疫刺激剂
蛋白质,评估优化制剂的体外和体内转移性卵巢的治疗效果
癌症模型。在K00阶段,重点将从系统稳定性转向表征
针对癌症治疗的基因治疗的细胞摄取和细胞内分解。基因疗法有
在过去的几十年里取得了许多令人兴奋的新突破,但由于其在癌症治疗中的应用受到限制
靶向性差,转染效率低。我将设计一个 NP 配方库并表征它们
体外和体内的摄取和细胞内分解,以确定可调节基因的关键 NP 特性
治疗功效。此外,我将设计和优化新免疫治疗的核酸组合
构建通过优化的基因治疗配方进行递送。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ivan Susin Pires其他文献
Ivan Susin Pires的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ivan Susin Pires', 18)}}的其他基金
Engineering Next-Generation Nanoparticles One Layer at a Time
一次一层地设计下一代纳米粒子
- 批准号:
10668497 - 财政年份:2022
- 资助金额:
$ 4.83万 - 项目类别:
相似国自然基金
P29单克隆抗体的3-羟基丁酰化修饰对其稳定性影响及提升抗泡型包虫病作用的研究
- 批准号:82360402
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
母传抗体水平和疫苗初种年龄对儿童麻疹特异性抗体动态变化的影响
- 批准号:82304205
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
SARS-CoV-2 S2蛋白与肠道菌群交叉反应抗体的产生机制及其对新冠肺炎病程和疫苗效果的影响
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
模式识别受体通过调节脂质代谢影响中性粒细胞程序性死亡参与抗中性粒细胞胞浆抗体相关小血管炎发病机制的研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
肠道菌群影响PD-1抗体对潜伏HIV的作用及其机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
相似海外基金
Engineered DNA-particles to model immune events in systemic lupus erythematosus
工程 DNA 颗粒模拟系统性红斑狼疮的免疫事件
- 批准号:
10644574 - 财政年份:2023
- 资助金额:
$ 4.83万 - 项目类别:
The immunogenicity and pathogenicity of HLA-DQ in solid organ transplantation
HLA-DQ在实体器官移植中的免疫原性和致病性
- 批准号:
10658665 - 财政年份:2023
- 资助金额:
$ 4.83万 - 项目类别:
Probing in situ higher order structures of monoclonal antibodies at water-air and water-oil interfaces via high-field nuclear magnetic resonance spectroscopy for viral infections
通过高场核磁共振波谱技术在水-空气和水-油界面原位探测单克隆抗体的高阶结构以检测病毒感染
- 批准号:
10593377 - 财政年份:2023
- 资助金额:
$ 4.83万 - 项目类别:
Engineering Next-Generation Nanoparticles One Layer at a Time
一次一层地设计下一代纳米粒子
- 批准号:
10668497 - 财政年份:2022
- 资助金额:
$ 4.83万 - 项目类别:
Design and development of a novel, thermostable, and inhalable dry powder COVID-19 vaccine
新型热稳定性可吸入干粉 COVID-19 疫苗的设计和开发
- 批准号:
10611975 - 财政年份:2022
- 资助金额:
$ 4.83万 - 项目类别: