Gold nanoparticle Neurosensory Epiretinal Implant to Treat Photoreceptor Vision Loss
金纳米颗粒神经感觉视网膜前植入物治疗感光器视力丧失
基本信息
- 批准号:10528012
- 负责人:
- 金额:$ 23.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAge related macular degenerationBiological AssayBlindnessCalcium ChannelCell SurvivalClinicalDataDevelopmentDevicesDiseaseElectric StimulationElectrodesExposure toEyeEye diseasesFDA approvedFrequenciesGenerationsGoalsGoldHumanImageImplantLightLight CellLightingLocationLongevityMeasurementMeasuresMethodsMissionModelingMorphologyMusNanotechnologyNational Eye InstituteNeuronsOperative Surgical ProceduresOpticsPathologyPatientsPerceptionPhotoreceptorsPower SourcesProceduresPropertyProsthesisPublic HealthResearchResearch SupportResolutionRetinaRetinal DegenerationRetinal DystrophyRetinal Ganglion CellsRetinitis PigmentosaSignal TransductionStimulusStructureSystemTestingTissuesTransgenic MiceUltraviolet RaysVisible RadiationVisionVisual impairmentWorkbasebiomaterial compatibilitycalcium indicatorcell growthdesigndielectric propertyexperimental studyhuman stem cellsimage processingimplantable deviceimprovedinnovationlight effectsmouse modelmulti-electrode arraysnanoGoldnanoparticlenanowireneurosensoryneurotoxicnovelnovel therapeuticsoperationparticlepatient populationresponserestorationretinal prosthesisretinal stimulationsight restorationtherapy developmenttitanium dioxidetooltwo photon microscopyvoltage
项目摘要
PROJECT ABSTRACT
The retinal degenerative and dystrophic pathologies are major causes of blindness through the
lifespan. There is thus a critical need to find novel therapeutic devices which can address this
broad group of devastating diseases. Gold-nanoparticle neurosensory epiretinal stimulator
(GNES) is one such device, an implant without external power generation for stimulation of
remaining retinal ganglion cells to restore vision. Gold nanoparticles placed on a dielectric layer
have the potency to generate voltage on exposure to certain wavelengths. Intriguingly, these
phenomena can be exploited to use them as photoreceptors. The long-term goal is to address
the need for biocompatible neurosensory devices, modifying the design for high resolution and
long lasting GNES for patients with retinal dystrophy and degenerations. The proposed research
will assess an autonomous GNES that can passively mix the effect of optical signals and
directly excite remaining retinal ganglion cells. The rationale for this research is that gold-
nanoparticles are voltage generating particles without the need for image processing, power
source or extensive surgery for the intraocular and extraocular component. The objective in this
application is to modify GNES as a retinal ganglion cell stimulator. The overall hypothesis is
that gold nanoparticles on a dielectric platform can serve as a stand-alone neurostimulator that
excites RGCs and are biocompatible with lasting excitatory capability. The hypothesis will be
tested via two specific aims: 1. Assess the excitation of RGCs ex vivo using GNES device.
GNES excitation will be assessed using two methods. First with multielectrode array (MEA) with
human stem cell induced RGCs growth over GNES. In addition, we will use Genetically
Encoded Calcium Indicator (GECI) mice crossed with rd1 mice which lack photoreceptors. We
will test the GNES response to different wavelengths and spatial resolution. 2. Determine the
feasibility of refined GNES with Light Shutter Valve (LSV). One of the concerns in electrical
stimulation is overheating the system or neurotoxic effect of constant stimulation. The effect of
LSV on RGC survival will be tested with prolonged retinal explants. The morphology and
functional assay of RGCs will be tested after prolonged culture or exposure to stimulation. This
work is innovative, as it is the first epiretinal implantable device with standalone capability and
capacity to regulate the light. The work is highly significant because it will define GNES and
LSV as a new tool to address the clinical challenge in treating patients with photoreceptor loss,
leading to development of new ways to restore vision.
项目摘要
视网膜变性和营养不良病理是导致失明的主要原因
寿命。因此,迫切需要找到能够解决这一问题的新型治疗设备
广泛的毁灭性疾病。金纳米颗粒神经感觉视网膜前刺激器
(GNES)就是这样一种设备,一种无需外部发电即可刺激的植入物
剩余的视网膜神经节细胞恢复视力。放置在介电层上的金纳米颗粒
暴露于某些波长时具有产生电压的能力。有趣的是,这些
可以利用这些现象将它们用作光感受器。长期目标是解决
对生物相容性神经感觉设备的需求,修改设计以获得高分辨率和
针对视网膜营养不良和变性患者的长期 GNES。拟议的研究
将评估一个自主 GNES,它可以被动地混合光信号的影响和
直接兴奋剩余的视网膜神经节细胞。这项研究的基本原理是,黄金
纳米粒子是产生电压的粒子,无需图像处理、电源
来源或广泛的眼内和眼外成分手术。本次活动的目的是
应用是将GNES修改为视网膜神经节细胞刺激器。总体假设是
介电平台上的金纳米粒子可以作为独立的神经刺激器
兴奋 RGC 并具有生物相容性和持久的兴奋能力。假设将是
通过两个具体目标进行测试: 1. 使用 GNES 装置评估离体 RGC 的兴奋情况。
GNES 激励将使用两种方法进行评估。首先采用多电极阵列 (MEA)
人类干细胞诱导 RGC 在 GNES 上生长。此外,我们将使用基因
编码钙指示剂 (GECI) 小鼠与缺乏光感受器的 rd1 小鼠杂交。我们
将测试 GNES 对不同波长和空间分辨率的响应。 2. 确定
使用光快门阀 (LSV) 改进 GNES 的可行性。电气方面关注的问题之一
刺激是使系统过热或持续刺激的神经毒性作用。的效果
LSV 对 RGC 存活的影响将通过延长的视网膜外植体进行测试。形态和
RGC 的功能测定将在长时间培养或暴露于刺激后进行测试。这
这项工作具有创新性,因为它是第一个具有独立功能的视网膜前植入设备,
调节光的能力。这项工作非常重要,因为它将定义 GNES 和
LSV 作为一种新工具来解决治疗光感受器丧失患者的临床挑战,
导致恢复视力的新方法的开发。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amir Reza Hajrasouliha其他文献
Role of the nitric oxide pathway and the endocannabinoid system in neurogenic relaxation of corpus cavernosum from biliary cirrhotic rats
一氧化氮途径和内源性大麻素系统在胆汁性肝硬化大鼠海绵体神经源性松弛中的作用
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:7.3
- 作者:
Mehdi Ghasemi;H. Sadeghipour;Hamed Shafaroodi;B. Nezami;T. Gholipour;Amir Reza Hajrasouliha;Sina Tavakoli;M. Nobakht;Kevin Moore;A. R. Mani;Ahmadreza Dehpour - 通讯作者:
Ahmadreza Dehpour
Amir Reza Hajrasouliha的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amir Reza Hajrasouliha', 18)}}的其他基金
Gold nanoparticle Neurosensory Epiretinal Implant to Treat Photoreceptor Vision Loss
金纳米颗粒神经感觉视网膜前植入物治疗感光器视力丧失
- 批准号:
10675766 - 财政年份:2022
- 资助金额:
$ 23.78万 - 项目类别:
相似国自然基金
年龄相关性黄斑变性治疗中双靶向药物递释策略及其机制研究
- 批准号:82301217
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
GNAS介导OPN4-PLCβ4-TRPC6/7通路调节自主感光视网膜神经节细胞在年龄相关性黄斑变性中的作用机制研究
- 批准号:82301229
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
HTRA1介导CTRP5调控脂代谢通路在年龄相关性黄斑变性中的致病机制研究
- 批准号:82301231
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
视网膜色素上皮细胞中NAD+水解酶SARM1调控自噬溶酶体途径参与年龄相关性黄斑变性的机制研究
- 批准号:82301214
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向年龄相关性黄斑变性诊断的迁移学习算法研究
- 批准号:62371328
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
相似海外基金
Novel Polymer-antibody Conjugates as Long-acting Therapeutics for Ocular Diseases
新型聚合物-抗体缀合物作为眼部疾病的长效治疗药物
- 批准号:
10760186 - 财政年份:2023
- 资助金额:
$ 23.78万 - 项目类别:
Nanoparticle-Based Tracking of Retinal Ganglion Cell Transplant
基于纳米颗粒的视网膜神经节细胞移植追踪
- 批准号:
10663516 - 财政年份:2023
- 资助金额:
$ 23.78万 - 项目类别:
Deciphering the role of mitochondrial/autophagy dysfunction in regulating inflammatory processes during AMD pathogenesis
破译线粒体/自噬功能障碍在 AMD 发病机制中调节炎症过程中的作用
- 批准号:
10664118 - 财政年份:2023
- 资助金额:
$ 23.78万 - 项目类别:
Nanoparticle-Based Tracking of Retinal Ganglion Cell Transplant
基于纳米颗粒的视网膜神经节细胞移植追踪
- 批准号:
10663516 - 财政年份:2023
- 资助金额:
$ 23.78万 - 项目类别: