Delineating the network effects of mental disorder-associated variants using convex optimization methods

使用凸优化方法描述精神障碍相关变异的网络效应

基本信息

  • 批准号:
    10504516
  • 负责人:
  • 金额:
    $ 79.91万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-01 至 2027-05-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY/ABSTRACT Driven by international open scientific collaboration through groups such as the Psychiatric Genomics Consortium (PGC, in which co-I Mullins is a leading analyst) both genome-wide association studies (GWAS) and whole exome and genome sequencing studies of neuropsychiatric disorders (NPDs) are rapidly increasing in sample size. With this increased sample size comes increased statistical power to detect many more, smaller genetic effects on disease risk, known as the polygenic component. The challenge now is to understand what these findings tell us about NPD risk, etiology and biology. Here we propose a suite of methods for multi-trait analysis to determine underlying latent structure, causal networks of genes and traits, and enriched data-derived regulatory pathways. We make extensive use of convex optimization methods that allow both computational efficiency and guarantees on reproducibility. In Aim 1 we will decompose a wide range of NPDs and their subphenotypes into shared and unique genetic components using a novel convex formulation of observed-weighted principal components analysis (PCA) and develop extensions to handle sample overlap, linkage disequilibrium (LD), and different ancestries. In Aim 2 we will extend and customize our existing work on causal network inference using biconvex optimization to estimate both cis and trans gene regulatory networks in the brain using large-scale uniformly processed chromatin accessibility and expression quantitative trait loci (QTLs). We will regularize estimates of cis interactions using chromatin conformation data, model latent genetic confounders in these networks using an expectation-maximization (EM) approach and estimate networks over both genes and NPDs in order to determine the most direct causes (“core” genes in the omnigenic model). In Aim 3 we will analyze both rare and common genetic associations in their gene regulatory network context. Borrowing from cancer genomics, we will use heat diffusion models to propagate statistical information on the local network over both genes and regulatory elements (REs) and then use graph clustering algorithms to extract “hot” subnetworks, corresponding to pathways implicated in the NPD under study. The methods we develop for these analyses will be made publicly available under source licenses with extensive support in terms of documentation, tutorials, and vignettes. Through this we hope to empower future “post-GWAS” analyses that can leverage the genetic, subphenotype and trait networks underlying human neuropsychiatric health, and eventually point the way to therapeutic interventions.
项目概要/摘要 由精神病基因组学等团体的国际开放科学合作推动 联盟(PGC,其中 co-I Mullins 是主要分析师)两项全基因组关联研究 (GWAS)以及神经精神疾病(NPD)的全外显子组和基因组测序研究 随着样本量的增加,统计能力也随之增强。 检测更多、更小的遗传对疾病风险的影响,称为多基因成分。 现在的挑战是了解这些研究结果告诉我们有关 NPD 风险、病因学和生物学的信息。 提出一套多特征分析方法,以确定潜在的潜在结构、因果关系 我们广泛利用基因和性状网络以及丰富的数据衍生调控途径。 凸优化方法既可以提高计算效率,又可以保证可重复性。 在目标 1 中,我们将把各种 NPD 及其亚表型分解为共享的和独特的 使用观察加权主成分的新颖凸公式的遗传成分 分析 (PCA) 并开发扩展来处理样本重叠、连锁不平衡 (LD) 和 在目标 2 中,我们将扩展和定制我们现有的因果网络推理工作。 使用双凸优化来估计大脑中的顺式和跨式基因调控网络 大规模统一处理的染色质可及性和表达数量性状基因座(QTL)。 将使用染色质构象数据规范顺式相互作用的估计,建立潜在遗传模型 使用期望最大化(EM)方法和估计网络来混淆这些网络 对基因和 NPD 进行分析,以确定最直接的原因(全基因组中的“核心”基因) 在目标 3 中,我们将分析基因调控中罕见和常见的遗传关联。 借用癌症基因组学的网络背景,我们将使用热扩散模型来传播。 本地网络上基因和调控元件(RE)的统计信息,然后使用 图聚类算法提取“热”子网络,对应于涉及的路径 我们正在研究的 NPD 方法将在下面公开发布。 源许可证在文档、教程和插图方面提供广泛的支持。 我们希望能够支持未来的“后 GWAS”分析,利用遗传、亚表型和性状 人类神经精神健康的网络基础,并最终为治疗指明道路 干预措施。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Arthur Knowles其他文献

David Arthur Knowles的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Arthur Knowles', 18)}}的其他基金

Delineating the network effects of mental disorder-associated variants using convex optimization methods
使用凸优化方法描述精神障碍相关变异的网络效应
  • 批准号:
    10674871
  • 财政年份:
    2022
  • 资助金额:
    $ 79.91万
  • 项目类别:
A CRISPR/Cas13 approach for identifying individual transcript isoform function in cancer
用于识别癌症中个体转录亚型功能的 CRISPR/Cas13 方法
  • 批准号:
    10671680
  • 财政年份:
    2022
  • 资助金额:
    $ 79.91万
  • 项目类别:
Learning the Regulatory Code of Alzheimer's Disease Genomes
学习阿尔茨海默病基因组的调控密码
  • 批准号:
    10471969
  • 财政年份:
    2020
  • 资助金额:
    $ 79.91万
  • 项目类别:
Learning the Regulatory Code of Alzheimer's Disease Genomes
学习阿尔茨海默病基因组的调控密码
  • 批准号:
    10045386
  • 财政年份:
    2020
  • 资助金额:
    $ 79.91万
  • 项目类别:
Learning the Regulatory Code of Alzheimer's Disease Genomes
学习阿尔茨海默病基因组的调控密码
  • 批准号:
    10471969
  • 财政年份:
    2020
  • 资助金额:
    $ 79.91万
  • 项目类别:
Learning the Regulatory Code of Alzheimer's Disease Genomes
学习阿尔茨海默病基因组的调控密码
  • 批准号:
    10247588
  • 财政年份:
    2020
  • 资助金额:
    $ 79.91万
  • 项目类别:
Learning the Regulatory Code of Alzheimer's Disease Genomes
学习阿尔茨海默病基因组的调控密码
  • 批准号:
    10406760
  • 财政年份:
    2020
  • 资助金额:
    $ 79.91万
  • 项目类别:
Learning the Regulatory Code of Alzheimer's Disease Genomes
学习阿尔茨海默病基因组的调控密码
  • 批准号:
    10686319
  • 财政年份:
    2020
  • 资助金额:
    $ 79.91万
  • 项目类别:

相似国自然基金

随机阻尼波动方程的高效保结构算法研究
  • 批准号:
    12301518
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
大规模黎曼流形稀疏优化算法及应用
  • 批准号:
    12371306
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
基于任意精度计算架构的量子信息处理算法硬件加速技术研究
  • 批准号:
    62304037
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
  • 批准号:
    12371308
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
基于物理信息神经网络的雷达回波资料反演蒸发波导算法研究
  • 批准号:
    42305048
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

The microbiome associated with oral Leukoplakia: A multi-omics mechanistic study
与口腔白斑相关的微生物组:一项多组学机制研究
  • 批准号:
    10870268
  • 财政年份:
    2023
  • 资助金额:
    $ 79.91万
  • 项目类别:
Integrating Genetic, Neuroimaging, Transcriptomic, and Clinical Risk Factors as Multivariate Predictors of Cognitive Deterioration in Alzheimer's Disease.
整合遗传、神经影像、转录组和临床风险因素作为阿尔茨海默病认知恶化的多变量预测因子。
  • 批准号:
    10673857
  • 财政年份:
    2022
  • 资助金额:
    $ 79.91万
  • 项目类别:
EpiMoRPH: A simulation environment for generating spatially-refined intervention strategies for the control of infectious disease
EpiMoRPH:用于生成控制传染病的空间精细干预策略的模拟环境
  • 批准号:
    10412872
  • 财政年份:
    2022
  • 资助金额:
    $ 79.91万
  • 项目类别:
Integrating Genetic, Neuroimaging, Transcriptomic, and Clinical Risk Factors as Multivariate Predictors of Cognitive Deterioration in Alzheimer's Disease.
整合遗传、神经影像、转录组和临床风险因素作为阿尔茨海默病认知恶化的多变量预测因子。
  • 批准号:
    10515569
  • 财政年份:
    2022
  • 资助金额:
    $ 79.91万
  • 项目类别:
Comprehensive molecular characterization of endometrial cancer, etiologic heterogeneity, and racial disparities
子宫内膜癌的综合分子特征、病因异质性和种族差异
  • 批准号:
    10343822
  • 财政年份:
    2021
  • 资助金额:
    $ 79.91万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了