Integrating Genetic, Neuroimaging, Transcriptomic, and Clinical Risk Factors as Multivariate Predictors of Cognitive Deterioration in Alzheimer's Disease.
整合遗传、神经影像、转录组和临床风险因素作为阿尔茨海默病认知恶化的多变量预测因子。
基本信息
- 批准号:10673857
- 负责人:
- 金额:$ 37.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAccountingAddressAgingAlgorithmsAlzheimer disease preventionAlzheimer&aposs DiseaseAlzheimer&aposs disease riskApplied GeneticsAutomobile DrivingBioinformaticsBiologicalBiologyBloodBrainBrain DiseasesBrain imagingCardiacCardiovascular systemCatalogsClinicalCognitionCognitiveComplexDataDementiaDeteriorationDiagnosisDiagnosticDimensionsDiseaseDisease ProgressionElderlyFunctional disorderGene ExpressionGenesGeneticGenetic RiskGenomicsGenotypeGenotype-Tissue Expression ProjectHeartHumanImpaired cognitionIndividualInstitutionInterventionInvestigationKnowledgeMeasurementMeasuresMediatingMedical ResearchMemoryMetabolicMethodsModelingMolecularMyocardialNational Institute of Neurological Disorders and StrokeNerve DegenerationNeural Network SimulationNeurobiologyNeuropsychologyOntologyOutcomeParticipantPathway interactionsPatternPersonsPharmaceutical PreparationsPhenotypePilot ProjectsRecoveryResearch InstituteRiskRisk FactorsScientistSignal TransductionSourceStrategic PlanningStructureSymptomsSystemTestingTimeTissue-Specific Gene ExpressionTissuesTrainingTranscriptbrain basedcardiovascular disorder riskclinical riskcognitive performancecohortdeep neural networkdemographicsdifferential expressionexperiencefunctional disabilitygene interactiongene networkgenetic architecturegenome wide association studyimprovedindexinginsightinterestmental statemild cognitive impairmentmultiple data typesnervous system disorderneural networkneurobiological mechanismneuroimagingnovelnovel markerperipheral bloodpolygenic risk scorepreventreligious order studyresiliencerisk varianttooltranscriptometranscriptomics
项目摘要
Over the past decade, scientists have accelerated efforts to better understand Alzheimer’s
disease (AD). Much progress has been made in revealing the genetic architecture of AD and its
common antecedent, mild cognitive impairment (MCI). Yet, some people who incur excessive
AD risk remain cognitively normal. Identifying risk factors for cognitive deterioration in dementia
can guide novel investigations into mechanisms underlying resilience to AD. The best-available
polygenic risk score for AD explains 1.7% of overall liability independent from the leading risk
gene, APOE (accounts for 17.4% of the variance in AD), indicating that a massive portion of
genetic liability remains unresolved. Genetic risk for cardiovascular disease contributes
additional risk for AD, thus a systems-level investigation into how cardiovascular dysfunction
interacts with neurobiological mechanisms of cognitive decline is warranted. Toward this end,
we developed a transcriptome-imputation method—the Brain Gene Expression and Network
Imputation Engine (BrainGENIE)—to measure the brain transcriptome in living individuals using
blood-based gene-expression profiles. BrainGENIE is fundamentally different from other
transcriptome-imputation methods, and captures a much larger proportion of the variance in the
brain transcriptome. BrainGENIE can predict 9–57% of the brain transcriptome, yielding an
approximate 1.8-fold increase in coverage relative to the prior “gold standard” method
PrediXcan, and which greatly improves our statistical power to detect genes and pathways
associated with disease. We have also generalized our BrainGENIE framework to impute
cardiac-specific transcriptome profiles (HeartGENIE), thereby allowing us to investigate brain-
and cardiac-specific transcriptome signatures associated with cognitive deterioration in
dementia. Our proposal contains three Specific Aims to improve our transcriptome-imputation
methods, reveal gene networks and biological pathways in brain and cardiac tissue underlying
cognitive impairment in dementia, and accurately predict an individual’s longitudinal cognitive
decline pave the way to precisely define individuals who are at risk for or resilient to AD. Aim 1:
Optimize our BrainGENIE and HeartGENIE algorithms to improve the accuracy of predicted
gene-expression levels for transcripts in the brain and cardiac tissue that are not currently well
predicted. Aim 2: Identify transcriptomic signatures of cognitive impairment in dementia with
BrainGENIE and HeartGENIE. Aim 3: Develop an neural network to accurately predict cognitive
decline longitudinally. This project will identify reveal multivariate risk factors potentially driving
cognitive decline, a critical step toward improving diagnosis, intervention, and prevention of AD.
在过去的十年中,科学家们加快了努力,以更好地了解阿尔茨海默病
在揭示 AD 及其遗传结构方面已经取得了很大进展。
常见的先兆是轻度认知障碍(MCI),然而,有些人会出现过度的症状。
AD 风险在认知上仍然正常。识别痴呆症认知恶化的危险因素。
可以指导对 AD 恢复机制的新颖研究。
AD 的多基因风险评分解释了独立于主要风险的总体责任的 1.7%
基因 APOE(占 AD 变异的 17.4%),表明很大一部分
心血管疾病的遗传风险仍未得到解决。
AD 的额外风险,因此需要对心血管功能障碍如何进行系统级研究
为此,有必要与认知能力下降的神经生物学机制相互作用。
我们开发了一种转录组插补方法——大脑基因表达和网络
插补引擎 (BrainGENIE) — 使用以下方法测量活体个体的大脑转录组
基于血液的基因表达谱与其他基因表达谱根本不同。
转录组插补方法,并捕获更大比例的方差
BrainGENIE 可以预测 9-57% 的大脑转录组,从而得出
相对覆盖范围比之前的“金标准”方法增加约 1.8 倍
PrediXcan,极大地提高了我们检测基因和通路的统计能力
我们还概括了我们的 BrainGENIE 框架来进行估算。
心脏特异性转录组图谱(HeartGENIE),从而使我们能够研究大脑
和与认知恶化相关的心脏特异性转录组特征
我们的提案包含三个具体目标来改善我们的转录组估算。
方法,揭示大脑和心脏组织中的基因网络和生物途径
痴呆症中的认知障碍,并准确预测个体的纵向
目标 1:
优化我们的 BrainGENIE 和 HeartGENIE 算法以提高预测的准确性
目前大脑和心脏组织中转录物的基因表达水平不佳
目标 2:识别痴呆症认知障碍的转录组特征。
BrainGENIE 和 HeartGENIE 目标 3:开发神经网络来准确预测认知能力。
该项目将确定揭示潜在驱动因素的多元风险因素。
认知能力下降是改善 AD 诊断、干预和预防的关键一步。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathan Hess其他文献
Jonathan Hess的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonathan Hess', 18)}}的其他基金
Integrating Genetic, Neuroimaging, Transcriptomic, and Clinical Risk Factors as Multivariate Predictors of Cognitive Deterioration in Alzheimer's Disease.
整合遗传、神经影像、转录组和临床风险因素作为阿尔茨海默病认知恶化的多变量预测因子。
- 批准号:
10515569 - 财政年份:2022
- 资助金额:
$ 37.6万 - 项目类别:
相似国自然基金
套期会计有效性的研究:实证检验及影响机制
- 批准号:72302225
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
全生命周期视域的会计师事务所分所一体化治理与审计风险控制研究
- 批准号:72372064
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
兔死狐悲——会计师事务所同侪CPA死亡的审计经济后果研究
- 批准号:72302197
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
上市公司所得税会计信息公开披露的经济后果研究——基于“会计利润与所得税费用调整过程”披露的检验
- 批准号:72372025
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
环境治理目标下的公司财务、会计和审计行为研究
- 批准号:72332003
- 批准年份:2023
- 资助金额:166 万元
- 项目类别:重点项目
相似海外基金
3/4-American Consortium of Early Liver Transplantation-Prospective Alcohol-associated liver disease Cohort Evaluation (ACCELERATE-PACE)
3/4-美国早期肝移植联盟-前瞻性酒精相关性肝病队列评估(ACCELERATE-PACE)
- 批准号:
10711001 - 财政年份:2023
- 资助金额:
$ 37.6万 - 项目类别:
Providing Tobacco Treatment to Patients Undergoing Lung Cancer Screening at MedStar Health: A Randomized Trial
为 MedStar Health 接受肺癌筛查的患者提供烟草治疗:一项随机试验
- 批准号:
10654115 - 财政年份:2023
- 资助金额:
$ 37.6万 - 项目类别:
Sensitivity to Cannabis Effects and Cue Reactivity as Markers of a Developing Disorder in Adolescents
对大麻效应的敏感性和提示反应性作为青少年发育障碍的标志
- 批准号:
10586397 - 财政年份:2023
- 资助金额:
$ 37.6万 - 项目类别:
2/4-American Consortium of Early Liver Transplantation-Prospective Alcohol-associated liver disease Cohort Evaluation (ACCELERATE-PACE)
2/4-美国早期肝移植联盟-前瞻性酒精相关性肝病队列评估(ACCELERATE-PACE)
- 批准号:
10711336 - 财政年份:2023
- 资助金额:
$ 37.6万 - 项目类别:
Non-invasive biometric screening for cerebrovascular disorders in persons with Down syndrome.
唐氏综合症患者脑血管疾病的无创生物识别筛查。
- 批准号:
10816240 - 财政年份:2023
- 资助金额:
$ 37.6万 - 项目类别: