Accurate and rapid assessment of sarcopenia in older adults through electrical impedance myography
通过电阻抗肌电图准确快速评估老年人肌少症
基本信息
- 批准号:10484558
- 负责人:
- 金额:$ 88.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AbdomenAdoptionAdultAgingAlgorithmsAmericanAssessment toolAtrophicBilateralCaringClinicalCollaborationsComplexConnective TissueDataData ScienceData SetDependenceDevelopmentDevicesDiagnosisDiagnosticDual-Energy X-Ray AbsorptiometryElderlyElectric StimulationExtensorFatty acid glycerol estersFrequenciesGaitGrantHealthHealth PersonnelHealthcareHistologicHydration statusImpairmentIndividualInfiltrationInjuryInstitutesKneeLassoLegLibrariesLower ExtremityMachine LearningMagnetic Resonance ImagingMeasurementMeasuresMethodsModelingModernizationMonitorMuscleMuscle ContractionMuscle WeaknessMuscle functionMyographyNeuromuscular DiseasesOutcomePathologyPhaseProductionResearchResearch PersonnelSkeletal MuscleSmall Business Innovation Research GrantSystemTechniquesTechnologyTestingTimeTrainingValidationWorkX-Ray Computed Tomographyage relatedage-related muscle lossalgorithm developmentbaseclinical research sitecloud basedcohortcost effectivedeconditioningelectric impedancefall riskfunctional statusimprovedlean body massmortalitymuscle formmuscle strengthprediction algorithmquadriceps musclesarcopeniascreeningtoolvirtualwasting
项目摘要
Project Summary
Forty-two percent of older adults (OAs) have one or more physical limitations that are essential for in-
dependence. Age-related muscle wasting and weakness (sarcopenia) are important contributors to these phy-
sical impairments, including most notably gait impairment. Moreover, sarcopenia is closely associated with an
increased risk of falls and other injuries leading to loss of independence and increased mortality. Healthcare
providers of OAs need improved means of evaluating lower extremity muscle condition for the development of
sarcopenia. MRI, CT, and DXA provide considerable information, but none are office-based and DXA only
provides information on lean body mass and fat content. In this application, we advance electrical
impedance myography (EIM) for assessment of lower extremity muscle condition in OAs. EIM relies
upon application of directionally focused, multi-frequency electrical current to specific muscles or muscle
groups. By applying the technology in such a localized fashion, it is virtually unaffected by hydration status or
other issues that commonly impact other bioimpedance-based methods. EIM has been studied for nearly two
decades in the field of neuromuscular disease and has been shown to be sensitive to a variety of alterations in
skeletal muscle including atrophy, degeneration, and simple deconditioning. Taking EIM one step further and
applying machine learning (ML) techniques to the complex multifrequency EIM data set, it even becomes
possible to predict histological features, including myofiber size, fat, and connective tissue content. Given this
demonstrated capability, EIM has the potential to serve as a convenient, office-based approach for assessing
muscle health in OAs. In this direct-to-Phase 2 SBIR application, Myolex proposes to establish EIM, via
its new device, the mScan, in conjunction with machine learning cloud-based platform, as a means of
obtaining MRI-like quantitative data in muscle of OAs. In Specific Aim 1, in conjunction with aging expert
researchers at 3 different clinical sites, we will collect MRI and EIM data on a cohort of healthy older adults,
along with standard functional measures as well as measuring specific force, via electrically stimulated muscle
contraction. Using this data, in Specific Aim 2, we will develop predictive algorithms, via the penalized
regression technique of Lasso (least absolute shrinkage and selection operator), leveraging EIM values to
predict muscle volume, muscle specific force, and muscle fatty infiltration. We will then incorporate these
algorithms into a cloud-based engine that will provide meaningful, easy-to-interpret values. At the conclusion of
this proposed work, we will have developed an accurate, powerful system that clinicians and researchers can
use for the rapid assessment of OA muscle health.
项目概要
42% 的老年人 (OA) 存在一种或多种身体限制,这些限制对于老年人来说至关重要。
依赖性。与年龄相关的肌肉萎缩和无力(肌肉减少症)是这些肌肉萎缩的重要原因。
身体损伤,包括最明显的步态损伤。此外,肌肉减少症与以下疾病密切相关:
跌倒和其他伤害的风险增加,导致丧失独立性和死亡率增加。卫生保健
OA 提供者需要改进评估下肢肌肉状况的方法,以促进
肌肉减少症。 MRI、CT 和 DXA 提供了大量信息,但都不是基于办公室的且仅 DXA
提供有关去脂体重和脂肪含量的信息。在此应用中,我们推进了电气
阻抗肌动描记 (EIM) 用于评估 OA 下肢肌肉状况。 EIM 依赖
将定向聚焦的多频电流施加到特定的肌肉或肌肉上
组。通过以这种局部方式应用该技术,它几乎不受水合状态或
通常影响其他基于生物阻抗的方法的其他问题。 EIM已经研究了近两年
在神经肌肉疾病领域研究了数十年,并已被证明对各种变化敏感
骨骼肌,包括萎缩、退化和简单的失调。让 EIM 更进一步
将机器学习 (ML) 技术应用于复杂的多频 EIM 数据集,它甚至变得
可以预测组织学特征,包括肌纤维大小、脂肪和结缔组织含量。鉴于此
EIM 有潜力作为一种方便的、基于办公室的评估方法
OA 中的肌肉健康。在这个直接进入第 2 阶段 SBIR 的应用中,Myolex 建议建立 EIM,通过
其新设备 mScan 与机器学习云平台相结合,作为一种手段
获得 OA 肌肉中类似 MRI 的定量数据。在具体目标 1 中,与老龄化专家合作
3 个不同临床地点的研究人员,我们将收集一组健康老年人的 MRI 和 EIM 数据,
以及标准功能测量以及通过电刺激肌肉测量比力
收缩。使用这些数据,在具体目标 2 中,我们将开发预测算法,通过惩罚
Lasso(最小绝对收缩和选择算子)的回归技术,利用 EIM 值
预测肌肉体积、肌肉比力和肌肉脂肪浸润。然后我们将把这些
将算法集成到基于云的引擎中,该引擎将提供有意义的、易于解释的值。结束时
这项拟议的工作,我们将开发出一个准确、强大的系统,临床医生和研究人员可以
用于快速评估 OA 肌肉健康状况。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William David Arnold其他文献
William David Arnold的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William David Arnold', 18)}}的其他基金
Accurate and rapid assessment of sarcopenia in older adults through electrical impedance myography
通过电阻抗肌电图准确快速评估老年人肌少症
- 批准号:
10668482 - 财政年份:2022
- 资助金额:
$ 88.94万 - 项目类别:
Accurate and rapid assessment of sarcopenia in older adults through electrical impedance myography - Development of Regulatory Plans Supplement
通过电阻抗肌动描记法准确、快速地评估老年人的肌少症 - 制定监管计划补充材料
- 批准号:
10700526 - 财政年份:2022
- 资助金额:
$ 88.94万 - 项目类别:
Motoneuronal mechanisms underlying age-related muscle weakness
年龄相关性肌肉无力的运动神经机制
- 批准号:
10641197 - 财政年份:2021
- 资助金额:
$ 88.94万 - 项目类别:
Motoneuronal mechanisms underlying age-related muscle weakness
年龄相关性肌肉无力的运动神经机制
- 批准号:
10407020 - 财政年份:2021
- 资助金额:
$ 88.94万 - 项目类别:
Motoneuronal mechanisms underlying age-related muscle weakness
年龄相关性肌肉无力的运动神经机制
- 批准号:
10612078 - 财政年份:2021
- 资助金额:
$ 88.94万 - 项目类别:
Motoneuronal mechanisms underlying age-related muscle weakness
年龄相关性肌肉无力的运动神经机制
- 批准号:
10543345 - 财政年份:2021
- 资助金额:
$ 88.94万 - 项目类别:
Motoneuronal mechanisms underlying age-related muscle weakness
年龄相关性肌肉无力的运动神经机制
- 批准号:
10618019 - 财政年份:2021
- 资助金额:
$ 88.94万 - 项目类别:
Motoneuronal mechanisms underlying age-related muscle weakness
年龄相关性肌肉无力的运动神经机制
- 批准号:
10810941 - 财政年份:2021
- 资助金额:
$ 88.94万 - 项目类别:
Social Isolation and Loss of Physical Function: Defining a Novel Neuromuscular Phenotype
社会孤立和身体功能丧失:定义一种新的神经肌肉表型
- 批准号:
10263238 - 财政年份:2020
- 资助金额:
$ 88.94万 - 项目类别:
相似国自然基金
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
- 批准号:32371047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
金融科技驱动的供应链库存与融资策略和技术采用合作机制研究
- 批准号:72371117
- 批准年份:2023
- 资助金额:39 万元
- 项目类别:面上项目
山丘区农户生计分化对水保措施采用的影响及其调控对策
- 批准号:42377321
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
- 批准号:72304103
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
金属有机骨架材料在环境VOCs处理过程中采用原位电子顺磁共振自旋探针检测方法的研究
- 批准号:22376147
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
TRD2: Interferometric Near Infrared Spectroscopy (iNIRS)
TRD2:干涉近红外光谱 (iNIRS)
- 批准号:
10649467 - 财政年份:2022
- 资助金额:
$ 88.94万 - 项目类别:
TRD2: Interferometric Near Infrared Spectroscopy (iNIRS)
TRD2:干涉近红外光谱 (iNIRS)
- 批准号:
10424948 - 财政年份:2022
- 资助金额:
$ 88.94万 - 项目类别:
Accurate and rapid assessment of sarcopenia in older adults through electrical impedance myography
通过电阻抗肌电图准确快速评估老年人肌少症
- 批准号:
10668482 - 财政年份:2022
- 资助金额:
$ 88.94万 - 项目类别:
Development of Machine Learning Composite Measures for Graft Outcome Selection in Pediatric Liver Transplantation
开发用于小儿肝移植移植结果选择的机器学习综合措施
- 批准号:
10484107 - 财政年份:2022
- 资助金额:
$ 88.94万 - 项目类别: