Next generation anti-cancer drugdelivering cement for bone metastasis patients
用于骨转移患者的下一代抗癌药物输送水泥
基本信息
- 批准号:10483954
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlpha ParticlesAmericanAntineoplastic AgentsAntitumor Drug Screening AssaysAreaBindingBone GrowthBone PainBone RegenerationBone SubstitutesBone TissueCancer EtiologyCancer PatientCell SurvivalCessation of lifeClinicClinicalDataDisseminated Malignant NeoplasmDoseDrug Delivery SystemsDrug toxicityEngineeringFDA approvedFood and Drug Administration Drug ApprovalFormulationFractureHealthHospitalsHumanHuman bodyHydroxyapatitesIn VitroInjectableLicensingLifeMalignant NeoplasmsMechanicsMedicalMedical DeviceMetastatic Neoplasm to the BoneMethodsMineralsMissionMovementNeoplasm MetastasisNotificationOrganOsteoclastsOsteolysisOsteolyticOsteoporosisPaget&aposs DiseasePainParticle SizePathway interactionsPatientsPersonsPharmaceutical PreparationsPlexiglassPolymethyl MethacrylatePositioning AttributePreclinical TestingPreparationProcessProductionQuality of lifeRecovery SupportRegenerative capacityResearchRisk AssessmentSerious Adverse EventSiteSmall Business Technology Transfer ResearchStandardizationSterilizationSurfaceSystemTechnologyTherapeuticTimeToxic effectTranslatingTranslationsUnited States National Institutes of HealthValidationWomanagedanti-cancerbasebiomaterial compatibilitybonebone fragilitybone healthcalcium phosphatecancer cellcommercializationdevelopmental toxicityeffective therapyefficacy testingexperiencehealinghigh riskimplant materialin vivoin vivo Modelinnovationinventionmedical schoolsmeetingsmid-career facultymimeticsmineralizationminimally invasivemonomernanomedicinenanoparticleneoplastic cellnext generationnovelpain reductionparticlepolymerizationpre-clinicalpreventprofessorprogramsprototypereproductivescale upside effectsystemic toxicitytargeted treatmenttumor progression
项目摘要
Abstract
Our mission is to develop an innovative anti-cancer drug delivering bone cement for bone metastasis patients,
which can be injected into metastasis-caused bone degeneration sites in a minimally invasive manner, to regress
cancer, regenerate bone, and stop the pain. Metastasis is the main cause of cancer death. Bone is one of the
most frequent cancer metastatic sites. About 350,000 Americans die due to bone metastasis each year.
Metastasized cancer cells can extensively destroy the bone by over-activating osteoclasts. Fragilized bone easily
gets fractured by simple movement, causing intolerable pain and immobility to bone metastasis patients. As a
result, the life quality of bone metastasis patients is extremely poor.
Bone metastasis is currently incurable. In the clinic, polymethyl methacrylate (PMMA) cement is
dominantly used to instantly stabilize the metastasis-caused bone fractures of dying cancer patients to reduce
their devastating pain, based on its excellent mechanical strength. However, PMMA is plexiglass that does not
regenerate bone and has a high risk of serious adverse events. As cancer therapeutics are rapidly advancing,
bone metastasis patients are living longer than before. Therefore, there is an urgent and unmet medical need
for an advanced cement that can support the recovery of cancer patient health. To overcome the drawbacks of
PMMA cement, calcium phosphate cement has been used for bone regeneration based on its similar
composition to native bone. However, existing calcium phosphate cement products burst release drugs and none
of them received FDA approval for drug delivery purposes.
To solve this important medical problem, we aim to develop a paradigm-shifting “healing cement” that
can deliver anti-cancer drugs and regenerate bone by using innovative whitlockite material. Whitlockite is the
second most abundant bone mineral in the human body, which exists with a higher ratio in younger aged people
and earlier stage of mineralization. Our team has developed a large scale, facile synthetic method of whitlockite
and showed its superior bone regeneration capacity and mechanical strength compared to existing calcium
phosphate bone substitute products in the clinic. Recently, excitingly, we advanced the synthetic process of
whitlockite and developed an injectable whitlockite-based cement. Strikingly, this advanced whitlockite-based
cement could load a significantly large quantity of drugs and release them in a sustained manner. Based on this
innovative invention, through this NIH STTR program, we aim to manufacture the first anti-cancer drug delivering
bone cement product and translate it into the clinic to benefit bone metastasis patients. We envision that our
innovative anti-cancer drug delivering whitlockite-based bone cement product will provide a breakthrough to
overcome bone metastasis. We also expect this whitlockite-based bone cement will significantly reduce the side
effects of anti-cancer drugs on other organs by enabling targeted therapy to the bone.
抽象的
我们的使命是开发一种创新的抗癌药物,为骨转移患者提供骨水泥,
可以以微创方式注射到转移引起的骨退变部位,以消退
癌症、再生骨骼和停止疼痛是癌症死亡的主要原因之一。
最常见的癌症转移部位,每年约有 350,000 名美国人死于骨转移。
转移的癌细胞主要通过过度激活破骨细胞来破坏骨骼,从而容易使骨骼脆弱。
简单的运动就会骨折,给骨转移患者带来难以忍受的疼痛和无法活动。
导致骨转移患者的生活质量极差。
骨转移目前在临床上是无法治愈的。
用于立即稳定垂死癌症患者因转移引起的骨折,以减少
它们具有毁灭性的疼痛,这是基于其优异的机械强度。然而,PMMA 是有机玻璃,却不会。
随着癌症治疗的迅速发展,骨骼再生并具有很高的严重不良事件风险。
骨转移患者的寿命比以前更长,因此存在迫切且未得到满足的医疗需求。
寻找一种可以支持癌症患者健康恢复的先进水泥。
PMMA骨水泥、磷酸钙骨水泥基于其类似的优点已被用于骨再生
然而,现有的磷酸钙骨水泥产品没有突释药物。
其中其中一些已获得 FDA 批准用于药物输送。
为了解决这一重要的医学问题,我们的目标是开发一种范式转变的“愈合水泥”,
可以通过使用创新的白铁矿材料来输送抗癌药物并再生骨骼。
人体内第二丰富的骨矿物质,在年轻人中比例较高
我们的团队开发了一种大规模、简便的白磷矿合成方法。
与现有的钙相比,显示出其优越的骨再生能力和机械强度
最近,令人兴奋的是,我们推进了磷酸盐骨替代产品的合成工艺。
并开发了一种可注射的白磷矿基水泥,引人注目的是,这种先进的白磷矿基水泥。
水泥可以装载大量药物并持续释放。
创新发明,通过这个 NIH STTR 计划,我们的目标是制造第一个抗癌药物输送
骨水泥产品并将其转化为临床以造福骨转移患者。
创新抗癌药物提供基于白铁矿的骨水泥产品将为以下领域提供突破:
我们还预计这种基于白磷矿的骨水泥将显着减少骨转移。
通过对骨骼进行靶向治疗来消除抗癌药物对其他器官的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hae Lin Jang其他文献
Hae Lin Jang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hae Lin Jang', 18)}}的其他基金
A novel bioengineering approach to restoring permanent periodontal inflammatory bone loss
一种恢复永久性牙周炎性骨质流失的新型生物工程方法
- 批准号:
10734465 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Nanostructured degradable bone cement for delivering novel antibiotics
用于输送新型抗生素的纳米结构可降解骨水泥
- 批准号:
10717850 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Whitlockite nanoparticle-based immunotherapy for bone metastasis
基于白磷矿纳米颗粒的骨转移免疫疗法
- 批准号:
10370370 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Whitlockite nanoparticle-based immunotherapy for bone metastasis
基于白磷矿纳米颗粒的骨转移免疫疗法
- 批准号:
10616475 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
相似海外基金
Exposure to Ambient Air Pollutants, Circulating microRNAs, and Hepatic Fat Fraction Among Young Adults
年轻人接触环境空气污染物、循环 microRNA 和肝脂肪分数
- 批准号:
10537895 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Lp(a) and Oxidized Phospholipids - Impact of Diets
Lp(a) 和氧化磷脂 - 饮食的影响
- 批准号:
10367048 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Remediation of Perfluorinated Chemicals in Water Using Novel High-Affinity Polymer Adsorbents
使用新型高亲和力聚合物吸附剂修复水中的全氟化学品
- 批准号:
9909672 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Novel radioimmunoconjugates for targeted alpha-particle therapy of metastatic prostatic cancer
用于转移性前列腺癌靶向α粒子治疗的新型放射免疫缀合物
- 批准号:
9922875 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别: