Nanostructured degradable bone cement for delivering novel antibiotics
用于输送新型抗生素的纳米结构可降解骨水泥
基本信息
- 批准号:10717850
- 负责人:
- 金额:$ 69.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAmericanAmputationAnti-Bacterial AgentsAntibioticsAreaBacteriaBacterial DNABindingBinding SitesBiochemistryBiomedical EngineeringBone CementsBone RegenerationBone TissueCementationChemicalsChronicClinicalComputer-Aided DesignDNA GyraseDataDebridementDefectDerivation procedureDevelopmentDevicesDiabetes MellitusDiabetic FootDiseaseDivalent CationsDrug resistanceEffectivenessElectronsEngineeringEvolutionExcisionExperimental DesignsFormulationGoalsHealthHeelHospitalsHumanHydroxyapatitesImpairmentImplantIn VitroIncidenceInfectionInjectableLocal TherapyMaintenanceMedicalMethodsMicrobial BiofilmsMineralsModelingMutateNanostructuresNatural regenerationNatureNecrosisOperative Surgical ProceduresOrthopedic SurgeryOrthopedicsOsteogenesisOsteomyelitisOutcomePainPatient AdmissionPatientsPenetrationPharmaceutical PreparationsPolymethyl MethacrylatePopulationPredispositionPrevalenceProcessQuality of lifeQuinolonesRecording of previous eventsRecoveryRegenerative capacityResearchResistanceResistance developmentRiskSiteSkeletonSurfaceSystemTestingToxic effectToxicologyTreatment EfficacyVertebral columnangiogenesisantibiotic designbacterial resistancebactericidebiomaterial compatibilitybonebone losschronic infectiondiabeticdiabetic patientdiabetic ratdrug release profileefficacy testingimprovedin silicoin vivoin vivo Modelinnovationmechanical propertiesmonomernanoparticlenext generationnovelpharmacophorerational designregenerativeresistant strainscreeningsynergismsystemic toxicity
项目摘要
PROJECT SUMMARY
The prevalence of diabetes has rapidly risen during the last decades at an alarming rate, and more than 54.9
million Americans (15.3% of the population) are predicted to suffer from diabetes by 2030. Diabetic patients are
highly susceptible to bone infections (osteomyelitis) and have poor bone regeneration capacity, placing them at
a risk of amputations that dramatically impacts the quality of life. Even though osteomyelitis is one of the oldest
diseases in human history, the existing medical approach to treat infected bone still has serious limitations while
encountering new challenges. The effectiveness of the current treatment approach of debridement of the bone
followed by antibiotics application is critically limited by (a) the formation of strongly assembled bacteria (biofilm)
that are difficult to remove, (b) evolution of bacterial resistance to existing antibiotics, and (3) non-degradability
of polymethylmethacrylate (PMMA) bone cement, which is used to locally deliver antibiotics but requires
additional surgery to remove it afterward and is bioinert with potential toxicity of unreacted monomers. Therefore,
there is a significant unmet medical need for the development of a next-generation antibiotic and an advanced
antibiotic delivering system that can effectively cure the infection and improve the recovery of bone tissue.
To solve this important problem, in this project, we aim to develop an innovative drug-device combination based
on a novel dual-targeting antibiotic that can effectively retard bacteria resistance and an advanced biodegradable
nanostructured bone cement that can induce a sustained release of antibiotics and enhance bone regeneration.
We propose (1) to use whitlockite (WH) nanoparticles to develop a next-generation biodegradable bone cement,
leveraging the excellent bone regeneration capacity and biodegradability of WH nanoparticles. WH also has a
highly functionalized surface and can form nanostructured cement that can provide a large binding site for
antibiotics; (2) to rationally develop next-generation antibiotics to have enhanced bactericidal capacity and
compatible with our new degradable bone cement via computer-aided design and multiple screening processes.
This is a significant advance from currently used antibiotics, which were originally never developed for bone
infection or delivery from bone cement. We have already demonstrated that our preliminary model of dual-action
antibiotics can significantly retard the evolution of bacterial resistance and is effective against biofilms; and (3)
to validate the therapeutic efficacy of our dual-targeting antibiotic-impregnated WH bone cement in a diabetic
osteomyelitis model in vivo by evaluating bone regeneration rate and conducting a comprehensive toxicological
test. We envisage that this project will generate the first rationally designed antibiotic-delivering biodegradable
cement that can treat biofilms, overcome drug resistance and regenerate the bone, thereby addressing a major
clinical need. This research will also be beneficial for inhibiting infections in general orthopedic surgeries and
thus, can lead to a paradigm shift in the treatment of bone infection.
项目概要
过去几十年来,糖尿病患病率以惊人的速度迅速上升,超过 54.9
预计到 2030 年,将有 100 万美国人(占总人口的 15.3%)患有糖尿病。糖尿病患者
极易受到骨感染(骨髓炎)且骨再生能力差,使他们处于
严重影响生活质量的截肢风险。尽管骨髓炎是最古老的疾病之一
人类历史上的疾病中,现有治疗骨感染的医学方法仍然存在严重的局限性
遇到新的挑战。目前骨清创治疗方法的有效性
其次,抗生素的应用受到以下因素的严重限制:(a) 强组装细菌(生物膜)的形成
难以去除,(b) 细菌对现有抗生素耐药性的进化,以及 (3) 不可降解性
聚甲基丙烯酸甲酯 (PMMA) 骨水泥,用于局部输送抗生素,但需要
随后需要进行额外的手术将其去除,并且具有生物惰性,未反应的单体具有潜在毒性。所以,
开发下一代抗生素和先进药物的医疗需求尚未得到满足
抗生素输送系统可以有效治愈感染并促进骨组织的恢复。
为了解决这个重要问题,在这个项目中,我们的目标是开发一种基于创新的药物-设备组合
研究一种新型双靶向抗生素,可有效延缓细菌耐药性和先进的可生物降解
纳米结构骨水泥可以诱导抗生素持续释放并增强骨再生。
我们建议(1)使用辉石(WH)纳米颗粒开发下一代可生物降解骨水泥,
利用WH纳米颗粒优异的骨再生能力和生物降解性。 WH还有一个
高度功能化的表面,可以形成纳米结构的水泥,可以为
抗生素; (2)合理开发新一代抗生素,增强杀菌能力
通过计算机辅助设计和多重筛选流程,与我们新型可降解骨水泥兼容。
与目前使用的抗生素相比,这是一个重大进步,抗生素最初从未针对骨骼开发
感染或骨水泥输送。我们已经证明了我们的双作用初步模型
抗生素可以显着延缓细菌耐药性的进化,并且对生物膜有效;和(3)
验证我们的双靶向抗生素浸渍 WH 骨水泥对糖尿病患者的治疗效果
通过评估骨再生率并进行全面的毒理学研究建立体内骨髓炎模型
测试。我们预计该项目将产生第一个设计合理、可生物降解的抗生素递送药物
可以治疗生物膜、克服耐药性和再生骨骼的水泥,从而解决主要问题
临床需要。这项研究也将有利于抑制普通骨科手术和
因此,可以导致骨感染治疗的范式转变。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hae Lin Jang其他文献
Hae Lin Jang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hae Lin Jang', 18)}}的其他基金
A novel bioengineering approach to restoring permanent periodontal inflammatory bone loss
一种恢复永久性牙周炎性骨质流失的新型生物工程方法
- 批准号:
10734465 - 财政年份:2023
- 资助金额:
$ 69.78万 - 项目类别:
Next generation anti-cancer drugdelivering cement for bone metastasis patients
用于骨转移患者的下一代抗癌药物输送水泥
- 批准号:
10483954 - 财政年份:2022
- 资助金额:
$ 69.78万 - 项目类别:
Whitlockite nanoparticle-based immunotherapy for bone metastasis
基于白磷矿纳米颗粒的骨转移免疫疗法
- 批准号:
10370370 - 财政年份:2019
- 资助金额:
$ 69.78万 - 项目类别:
Whitlockite nanoparticle-based immunotherapy for bone metastasis
基于白磷矿纳米颗粒的骨转移免疫疗法
- 批准号:
10616475 - 财政年份:2019
- 资助金额:
$ 69.78万 - 项目类别:
相似海外基金
Examining linkages between disrupted care and chronic disease outcomes during the COVID-19 pandemic: a VAMC level spatio-temporal analysis
检查 COVID-19 大流行期间中断的护理与慢性病结果之间的联系:VAMC 级别时空分析
- 批准号:
10641136 - 财政年份:2023
- 资助金额:
$ 69.78万 - 项目类别:
Sensory Augmentation, Restoration, and Modulation Using a Spinal Neuroprosthesis
使用脊柱神经假体进行感觉增强、恢复和调节
- 批准号:
10687329 - 财政年份:2023
- 资助金额:
$ 69.78万 - 项目类别:
Implementation of a Medication Adherence Instrument among Patients with Symptomatic Peripheral Artery Disease after Peripheral Vascular Intervention
在周围血管介入治疗后有症状的周围动脉疾病患者中实施药物依从性工具
- 批准号:
10739335 - 财政年份:2023
- 资助金额:
$ 69.78万 - 项目类别:
Quantifying proteins in plasma do democratize personalized medicine for patients with type 1 diabetes
量化血浆中的蛋白质确实使 1 型糖尿病患者的个性化医疗民主化
- 批准号:
10730284 - 财政年份:2023
- 资助金额:
$ 69.78万 - 项目类别:
Strain-Programmed Bioadhesive Patch for Enhanced Diabetic Wound Healing
用于增强糖尿病伤口愈合的应变程序生物粘附贴片
- 批准号:
10818916 - 财政年份:2023
- 资助金额:
$ 69.78万 - 项目类别: