Guiding Attention in Real-World Scenes

在现实场景中引导注意力

基本信息

  • 批准号:
    10477474
  • 负责人:
  • 金额:
    $ 36.89万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Project Summary Real-world scenes contain far more information than we can perceive at any given moment. Scene perception therefore requires attentional selection of relevant scene regions for prioritized processing. How are those aspects of the world that should receive priority selected? Although much past research has focused on how attention is guided by the visual properties of a scene, new evidence from meaning maps, developed in the previous funding period, established that the distribution of meaning across a scene plays a central and often dominant role in guiding attention. This surprising finding raises many important new questions about the nature of scene meaning and its specific role in attentional guidance. The overarching goal of this project is to understand in detail how the semantic features of a scene’s objects and functional spaces influence the guidance of visual attention in complex real-world scenes. The specific aims are: (1) To determine the role of object semantics in attentional guidance in scenes; (2) To determine the role of functional spaces in attentional guidance in scenes; (3) To determine how viewing task interacts with scene semantics in guiding attention. The project is innovative in expanding the traditional study of attention to explicitly consider the role of meaning. To this end, new semantic maps capitalizing on the meaning map concept will be used capture local region meaning continuously over a scene, allowing for direct investigation of the relationships of different types of meaning with attention. The project is innovative in (1) expanding the traditional study of visual attention to explicitly consider the role of semantics; (2) focusing on the semantics of both scene content (objects) and scene structure (space); (3) considering the role of meaning in attentional guidance in the context of viewing task; (4) integrating the use of a wide variety of cognitive science methods marshalled in the service of understanding the influence of meaning on visual attention in real-world scenes, including eyetracking, large-scale crowd-sourcing, computational image processing, computational semantic modeling, and deep convolutional neural networks. The project is significant in challenging current models of visual attention to account for the role of scene meaning. Because the proposed studies test competing models, the results will lead to the development of integrative theoretical frameworks that advance the field regardless of the outcome. While focused on basic science, the studies have potentially important translational implications by providing a more complete characterization of the processes associated with visual attention. The proposed studies may ultimately lead to the development of rehabilitation strategies for visual attention as it operates in the real world, better capitalizing on the use of a viewer’s knowledge to offset disrupted functions in those with attention and vision deficits.
项目概要 现实世界的场景包含的信息远多于我们在任何给定时刻所能感知的信息。 因此区域需要注意选择相关场景进行优先处理。 尽管过去的许多研究都集中在如何选择世界的哪些方面? 注意力是由场景的视觉属性引导的,来自意义地图的新证据,在 之前的资助期间,确定了整个场景的意义分布起着核心作用,并且经常发挥作用 这一令人惊讶的发现提出了许多关于注意力的重要新问题。 场景意义的本质及其在注意力引导中的具体作用该项目的总体目标是 详细了解场景对象和功能空间的语义特征如何影响 复杂现实场景中视觉注意力的指导具体目标是:(1)确定视觉注意力的作用。 场景中注意引导中的对象语义;(2)确定功能空间在注意中的作用; 场景中的引导;(3)确定观看任务如何与场景语义相互作用来引导注意力。 该项目的创新之处在于扩展了传统的注意力研究,明确考虑了 为此,将使用利用意义图概念的新语义图来捕获局部意义。 区域在场景中具有连续意义,允许直接调查不同区域之间的关系 该项目的创新之处在于(1)扩展了传统的视觉研究。 注意明确考虑语义的作用;(2)关注场景内容的语义; (物体)和场景结构(空间);(3)考虑上下文中注意力引导的意义的作用; (4) 整合服务中整理的各种认知科学方法的使用 了解意义对现实世界场景中视觉注意力的影响,包括眼球追踪, 大规模众包、计算图像处理、计算语义建模和深度学习 该项目对于挑战当前的视觉注意力模型具有重要意义。 由于所提出的研究测试了竞争模型,因此结果将说明场景意义的作用。 导致综合理论框架的发展,无论结果如何,该框架都会推动该领域的发展。 这些研究虽然侧重于基础科学,但通过提供 拟议的研究可能会更完整地描述与视觉注意相关的过程。 最终导致视觉注意力康复策略的发展,因为它在现实中运作 世界,更好地利用观众的知识来抵消那些注意力集中的人的功能中断 和视力缺陷。

项目成果

期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
When more is more: redundant modifiers can facilitate visual search.
当更多就是更多时:冗余修饰符可以促进视觉搜索。
  • DOI:
  • 发表时间:
    2021-02-17
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rehrig, Gwendolyn;Cullimore, Reese A;Henderson, John M;Ferreira, Fernanda
  • 通讯作者:
    Ferreira, Fernanda
Transformers bridge vision and language to estimate and understand scene meaning.
变形金刚连接视觉和语言来估计和理解场景含义。
  • DOI:
  • 发表时间:
    2023-05-29
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hayes, Taylor R;Henderson, John M
  • 通讯作者:
    Henderson, John M
Meaning-based guidance of attention in scenes as revealed by meaning maps.
通过意义图揭示的基于意义的场景注意力引导。
  • DOI:
  • 发表时间:
    2017-10
  • 期刊:
  • 影响因子:
    29.9
  • 作者:
    Henderson, John M;Hayes, Taylor R
  • 通讯作者:
    Hayes, Taylor R
When scenes speak louder than words: Verbal encoding does not mediate the relationship between scene meaning and visual attention.
当场景胜于雄辩时:语言编码不能调节场景意义和视觉注意力之间的关系。
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Rehrig, Gwendolyn;Hayes, Taylor R;Henderson, John M;Ferreira, Fernanda
  • 通讯作者:
    Ferreira, Fernanda
Meaning Guides Attention during Real-World Scene Description.
意义在现实场景描述中引导注意力。
  • DOI:
  • 发表时间:
    2018-09-10
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Henderson, John M;Hayes, Taylor R;Rehrig, Gwendolyn;Ferreira, Fernanda
  • 通讯作者:
    Ferreira, Fernanda
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John M Henderson其他文献

John M Henderson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John M Henderson', 18)}}的其他基金

Guiding Attention in Real-World Scenes
在现实场景中引导注意力
  • 批准号:
    10250349
  • 财政年份:
    2017
  • 资助金额:
    $ 36.89万
  • 项目类别:
TYPES AND TOKENS IN DYNAMIC OBJECT IDENTIFICATION
动态对象识别中的类型和标记
  • 批准号:
    2253020
  • 财政年份:
    1995
  • 资助金额:
    $ 36.89万
  • 项目类别:

相似国自然基金

基于多模态分子影像和人工智能的结直肠癌PD-L1表达演变预测及机制研究
  • 批准号:
    82302185
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
人工智能技术加剧全球价值链非平衡发展的形成机理与中国对策研究
  • 批准号:
    72303127
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于计算模拟和人工智能融合策略的卡宾蛋白酶优化和设计
  • 批准号:
    22303102
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
教育人工智能背景下课程智慧大脑构建研究
  • 批准号:
    62367003
  • 批准年份:
    2023
  • 资助金额:
    29 万元
  • 项目类别:
    地区科学基金项目
人工智能驱动的PDE4抑制剂设计及抗肺纤维化作用研究
  • 批准号:
    82304384
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

REmote symptom COllection to improVE postopeRative care (RECOVER)
远程症状收集以改善术后护理(恢复)
  • 批准号:
    10637739
  • 财政年份:
    2023
  • 资助金额:
    $ 36.89万
  • 项目类别:
Using Artificial Intelligence to Predict Cognitive Training Response in Amnestic Mild Cognitive Impairment
使用人工智能预测遗忘型轻度认知障碍患者的认知训练反应
  • 批准号:
    10572105
  • 财政年份:
    2023
  • 资助金额:
    $ 36.89万
  • 项目类别:
Computer-Aided Triage of Body CT Scans with Deep Learning
利用深度学习对身体 CT 扫描进行计算机辅助分类
  • 批准号:
    10585553
  • 财政年份:
    2023
  • 资助金额:
    $ 36.89万
  • 项目类别:
Expanding Access to Care for Marginalized Caregivers through Innovative Methods for Multicultural and Multilingual Adaptation of AI-Based Health Technologies
通过基于人工智能的医疗技术的多文化和多语言适应创新方法,扩大边缘化护理人员获得护理的机会
  • 批准号:
    10741177
  • 财政年份:
    2023
  • 资助金额:
    $ 36.89万
  • 项目类别:
Neural Conversational Agent for Automated Weight Loss Counseling
用于自动减肥咨询的神经对话代理
  • 批准号:
    10668094
  • 财政年份:
    2023
  • 资助金额:
    $ 36.89万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了