RadxTools for assessing tumor treatment response on imaging

用于评估影像学肿瘤治疗反应的 RadxTools

基本信息

  • 批准号:
    10477947
  • 负责人:
  • 金额:
    $ 36.57万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

ABSTRACT: Over 1.6 million patients in the U.S. annually undergo chemo- or radiation- as first-line cancer therapy. After therapy, the most significant challenge for oncologists is identifying non-responders (those with residual or progressive disease), which could allow them to be switched to alternative therapies. Similarly, if those with stable or regressing disease were identified early and reliably, patients could avoid unnecessary and highly morbid surgeries or biopsies for disease confirmation. Unfortunately, expert assessment of post-treatment imaging is challenging, as residual disease is visually confounded with benign treatment-induced changes on imaging. There is hence a critical need for dedicated radiomic (computerized feature extraction from imaging) and informatics approaches to enable reliable post-treatment tumor assessment. Such tools will need to account for: (1) Limited well-curated data resources with deeply annotated pathology-validated radiographic datasets, for discovery and validation of new imaging and radiomic markers for post-treatment characterization in vivo; (2) Need for specialized radiomics tools that specifically quantify morphological perturbations in response to shrinkage/growth of the lesion for identifying progressive disease (versus benign confounders), despite presence of treatment-induced artifacts (exacerbated noise, reduced contrast, poor resolution); and (3) Lack of comprehensive quality control (QC) tools to identify which of a plethora of radiomic features are both discriminable as well as generalizable to variations between sites and scanners. To address these challenges, we propose RadxTools, a new image informatics toolkit comprising three modules: (a) RadQC to enable quality control of radiomics features across multi-site imaging cohorts, (b) RadTx comprising new radiomics tools which capture local surface morphometric changes and subtle structural deformations unique to tumor response on post-treatment imaging, and (c) RadPathFuse for creating deeply annotated learning sets by spatially mapping post-treatment changes from ex vivo surgically excised histopathology specimens onto pre-operative in vivo imaging. RadxTools will be evaluated in the context of post-treatment characterization for use cases in distinguishing (a) radiation effects from cancer recurrence for brain tumors; and (b) complete/partial vs incomplete chemoradiation response for rectal cancers. Deliverables and Dissemination: Our team has had a successful history of disseminating informatics tools (>1000 downloads), including our most recent release of RadTx which has been integrated into 3 informatics platforms. By organizing community resources and targeted workshops, as well as releasing highly curated data cohorts, our team is uniquely positioned to disseminate RadxTools to the radiomics/imaging community, professional societies, and oncology working groups. Our deliverables will include tool prototypes as modules within 5 QIN/ITCR-funded platforms (3D Slicer, MeVisLab, Sedeen, CapTk, QIFP) for widespread dissemination to targeted end-user communities, in addition to deeply annotated learning sets assembled through the 2 use-cases in this project.
摘要:美国每年有超过 160 万患者接受化疗或放疗作为一线癌症治疗 治疗。治疗后,肿瘤学家面临的最重大挑战是识别无反应者(那些有反应的人) 残留或进展性疾病),这可以让他们转向替代疗法。同样,如果 那些病情稳定或消退的患者能够及早可靠地被识别出来,患者可以避免不必要的和 用于确诊疾病的高发病率手术或活组织检查。不幸的是,专家对治疗后的评估 成像具有挑战性,因为残余疾病在视觉上与良性治疗引起的变化混淆 成像。因此,迫切需要专用放射组学(从成像中提取计算机特征) 和信息学方法,以实现可靠的治疗后肿瘤评估。此类工具需要考虑 用于:(1) 有限的精心策划的数据资源,具有经过深入注释的病理学验证的放射线照相数据集,用于 发现和验证新的成像和放射组学标记,用于体内治疗后表征; (2) 需要专门的放射组学工具来专门量化形态学扰动以响应 尽管存在病变,但仍可通过病变的缩小/生长来识别进行性疾病(与良性混杂因素相比) 治疗引起的伪影(噪声加剧、对比度降低、分辨率差); (3) 缺乏 全面的质量控制 (QC) 工具,用于识别众多放射组学特征中的哪一个既是 可区分并可推广到站点和扫描仪之间的差异。为了应对这些挑战, 我们提出 RadxTools,一个新的图像信息学工具包,包含三个模块:(a) RadQC 以确保质量 控制多位点成像队列的放射组学特征,(b) RadTx 包含新的放射组学工具, 捕获肿瘤反应特有的局部表面形态变化和微妙的结构变形 治疗后成像,以及 (c) RadPathFuse,用于通过空间映射创建深度注释的学习集 从离体手术切除的组织病理学标本到术前体内的治疗后变化 成像。 RadxTools 将在以下用例的治疗后表征的背景下进行评估 区分 (a) 脑肿瘤的辐射效应与癌症复发; (b) 完整/部分 vs 直肠癌放化疗反应不完全。可交付成果和传播:我们的团队已经 传播信息学工具的成功历史(> 1000次下载),包括我们最新发布的 RadTx 已集成到 3 个信息学平台中。通过组织社区资源并有针对性 研讨会,以及发布精心策划的数据队列,我们​​的团队具有独特的优势来传播 RadxTools 面向放射组学/影像学界、专业协会和肿瘤学工作组。我们的 可交付成果将包括作为 5 个 QIN/ITCR 资助平台(3D Slicer、MeVisLab、 Sedeen、CapTk、QIFP),除了深入了解之外,还可以广泛传播到目标最终用户社区 通过本项目中的 2 个用例组装的带注释的学习集。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pallavi Tiwari其他文献

Pallavi Tiwari的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Pallavi Tiwari', 18)}}的其他基金

Artificial Intelligence-based decision support for chemotherapy-response assessment in Brain Tumors
基于人工智能的脑肿瘤化疗反应评估决策支持
  • 批准号:
    10589512
  • 财政年份:
    2023
  • 资助金额:
    $ 36.57万
  • 项目类别:
RadxTools for assessing tumor treatment response on imaging
用于评估影像学肿瘤治疗反应的 RadxTools
  • 批准号:
    10206077
  • 财政年份:
    2020
  • 资助金额:
    $ 36.57万
  • 项目类别:
RadxTools for assessing tumor treatment response on imaging
用于评估影像学肿瘤治疗反应的 RadxTools
  • 批准号:
    10593646
  • 财政年份:
    2020
  • 资助金额:
    $ 36.57万
  • 项目类别:

相似国自然基金

套期会计有效性的研究:实证检验及影响机制
  • 批准号:
    72302225
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
全生命周期视域的会计师事务所分所一体化治理与审计风险控制研究
  • 批准号:
    72372064
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
兔死狐悲——会计师事务所同侪CPA死亡的审计经济后果研究
  • 批准号:
    72302197
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
环境治理目标下的公司财务、会计和审计行为研究
  • 批准号:
    72332003
  • 批准年份:
    2023
  • 资助金额:
    166 万元
  • 项目类别:
    重点项目

相似海外基金

SORDINO-fMRI for mouse brain applications
用于小鼠大脑应用的 SORDINO-fMRI
  • 批准号:
    10737308
  • 财政年份:
    2023
  • 资助金额:
    $ 36.57万
  • 项目类别:
Delineating the functional impact of recurrent repeat expansions in ALS using integrative multiomic analysis
使用综合多组学分析描述 ALS 中反复重复扩增的功能影响
  • 批准号:
    10776994
  • 财政年份:
    2023
  • 资助金额:
    $ 36.57万
  • 项目类别:
Subchondral Trabecular Plate and Rod Abnormalities in Human Osteoarthritis
人类骨关节炎的软骨下小梁板和杆异常
  • 批准号:
    10660605
  • 财政年份:
    2023
  • 资助金额:
    $ 36.57万
  • 项目类别:
Impact of Structural Racism on Racial Disparities in Cognitive Impairment
结构性种族主义对认知障碍种族差异的影响
  • 批准号:
    10572864
  • 财政年份:
    2023
  • 资助金额:
    $ 36.57万
  • 项目类别:
Integration of advanced imaging and multiOMICs to elucidate pro-atherogenic effects of endothelial-to-Immune cell-like transition (EndICLT)
整合先进成像和多组学技术来阐明内皮细胞向免疫细胞样转变的促动脉粥样硬化效应 (EndICLT)
  • 批准号:
    10606258
  • 财政年份:
    2023
  • 资助金额:
    $ 36.57万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了