Brain and eye pressure-induced optic nerve and retinal degeneration
脑和眼压引起的视神经和视网膜变性
基本信息
- 批准号:10475612
- 负责人:
- 金额:$ 42.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AbateAblationAdultAffectAmacrine CellsAnatomyAnimalsAstrocytesAttentionAutopsyAwardBehavioralBiologyBlindnessBlood CirculationBlood VesselsBlood capillariesBlood flowBrainCell HypoxiaCell physiologyCerebrospinal FluidClinical TreatmentComplexContrast SensitivityCustomDataDependenceDiseaseElderlyElectrophysiology (science)ElectroretinographyEnergy MetabolismEquilibriumExcisionEyeFunctional disorderFundingFutureGene ExpressionGenesGenetic TranscriptionGlaucomaHyperactivityHypoxiaImmunohistochemistryIndividualInfusion proceduresInjuryIntracranial HypertensionIntracranial PressureIntraocular pressure testLaboratoriesLinkMechanicsMicrospheresModelingModificationMusNerve DegenerationNeurodegenerative DisordersOptic DiskOptic NerveOptical Coherence TomographyOxygenPathogenesisPatientsPatternPhenotypePhysiologic Intraocular PressurePhysiologicalPhysiologyPopulationPredispositionPublishingResearchRetinaRetinal DegenerationRetinal Ganglion CellsRisk FactorsRoleSeriesStructureTechniquesTestingTherapeutic StudiesTimeTissuesTransgenic MiceTransmission Electron MicroscopyUnited StatesVariantVisionVisualbasecell injurycell typedecubitus ulcerexperimental studyhypoxia inducible factor 1in vivointerestmechanical forcemulti-electrode arraysnoveloptic nerve disorderpreferencepressurepreventresponsetheoriestooltranscriptomicstranslational diagnosticstranslational therapeutics
项目摘要
Project Summary
Glaucoma represents a number of complex diseases with a common endpoint of retinal ganglion cell (RGC)
and optic nerve degeneration. Two major models of glaucoma pathogenesis exist – the mechanical
hypothesis, which is based on the interaction of intraocular pressure (IOP) and intracranial pressure (ICP), and
the vascular hypothesis, which is based on factors that reduce blood flow to RGCs and the optic nerve.
Preliminary results from our laboratory suggest that experimental manipulations of mechanical factors such as
IOP and ICP in mice result in a range of microvascular and hypoxic abnormalities in the retina. These
abnormalities appear to differ not only according IOP and ICP level and exposure duration, but among retinal
cell types. In particular, we are interested in RGCs and amacrine cells (ACs), which are critical upstream
regulators of RGC function. In this renewal application, we propose to identify the earliest differential
responses of RGCs, ACs, and the retinal vasculature to IOP and ICP variation, and to determine the impact of
the hypoxic mechanisms that underlie these responses. There are three specific aims: (1) determine the
mechanism and differential susceptibilities of retinal capillary plexi to changes in IOP and/or ICP; 2) delineate
the differential hypoxic responses that occur in RGCs and ACs after changes in IOP, and test the hypothesis
that hypoxia in ACs causes physiologic dysfunction in RGCs; and 3) to test the hypothesis that HIF1, the
primary regulator of the hypoxic response, is required for ICP-induced RGC injury. Throughout these Aims, we
will employ novel experimental tools that enable us to elevate IOP and ICP to predictable levels for specific
durations, which allow us to assess the effects of both magnitude and duration of IOP/ICP change. We will
also use a new technique to isolate and culture adult RGCs and AC with high fidelity to probe the differential
responses of both cell types to hypoxia and preceding IOP injury. Used in conjunction with a series of in vivo
and post mortem electrophysiologic, behavioral, anatomic, and transcriptomic assessments of RGCs, ACs,
and the retinal vasculature in both wild type and transgenic mice, we will determine the relative contributions of
IOP and ICP change, and assess how alteration of hypoxia and the hypoxic response modifies these
contributions to impact RGC/AC dysfunction and survival. Our research will provide an important link between
mechanical and vascular hypotheses of glaucoma pathogenesis, potentially identifying a unified theory for
susceptibility to glaucoma that can guide future translational diagnostic and therapeutic studies.
项目概要
青光眼代表了许多复杂的疾病,其共同终点是视网膜神经节细胞(RGC)
青光眼发病机制存在两种主要模型——机械性模型。
假设,基于眼压 (IOP) 和颅内压 (ICP) 的相互作用,以及
血管假说,该假说基于减少流向 RGC 和视神经的血流量的因素。
我们实验室的初步结果表明,机械因素的实验操作,例如
小鼠的 IOP 和 ICP 会导致视网膜出现一系列微血管和缺氧异常。
异常似乎不仅根据 IOP 和 ICP 水平以及暴露持续时间而不同,而且在视网膜之间也存在差异。
我们特别对 RGC 和无长突细胞 (AC) 感兴趣,它们是关键的上游细胞。
在这个更新申请中,我们建议确定最早的差异。
RGC、AC 和视网膜脉管系统对 IOP 和 ICP 变化的反应,并确定
这些反应背后的缺氧机制有三个具体目标:(1)确定
视网膜毛细血管丛对 IOP 和/或 ICP 变化的机制和不同敏感性 2) 描述;
IOP 变化后 RGC 和 AC 中发生的差异性缺氧反应,并检验假设
AC 缺氧会导致 RGC 生理功能障碍;3) 检验 HIF1α 的假设;
缺氧反应的主要调节因子是 ICP 引起的 RGC 损伤所必需的。
将采用新颖的实验工具,使我们能够将 IOP 和 ICP 提高到特定的可预测水平
持续时间,这使我们能够评估 IOP/ICP 变化的幅度和持续时间的影响。
还使用新技术以高保真度分离和培养成人 RGC 和 AC,以探究差异
两种细胞类型对缺氧和之前的 IOP 损伤的反应与一系列体内实验结合使用。
以及 RGC、AC 的死后电生理、行为、解剖和转录组评估
以及野生型和转基因小鼠的视网膜血管系统,我们将确定
IOP 和 ICP 变化,并评估缺氧和缺氧反应的改变如何改变这些
我们的研究将提供影响 RGC/AC 功能障碍和生存之间的重要联系。
青光眼发病机制的机械和血管假说,有可能确定一个统一的理论
对青光眼的易感性可以指导未来的转化诊断和治疗研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Benjamin J Frankfort其他文献
Benjamin J Frankfort的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Benjamin J Frankfort', 18)}}的其他基金
An in vitro/in vivo system for targeted retinal ganglion cell subtype manipulation
用于靶向视网膜神经节细胞亚型操作的体外/体内系统
- 批准号:
10354977 - 财政年份:2022
- 资助金额:
$ 42.55万 - 项目类别:
Acoustically targeted, high-resolution, site-specific, transretinal delivery of macromolecules
声学靶向、高分辨率、位点特异性、经视网膜输送大分子
- 批准号:
10706971 - 财政年份:2022
- 资助金额:
$ 42.55万 - 项目类别:
An in vitro/in vivo system for targeted retinal ganglion cell subtype manipulation
用于靶向视网膜神经节细胞亚型操作的体外/体内系统
- 批准号:
10546443 - 财政年份:2022
- 资助金额:
$ 42.55万 - 项目类别:
Acoustically targeted, high-resolution, site-specific, transretinal delivery of macromolecules
声学靶向、高分辨率、位点特异性、经视网膜输送大分子
- 批准号:
10373250 - 财政年份:2022
- 资助金额:
$ 42.55万 - 项目类别:
Brain and eye pressure-induced optic nerve and retinal degeneration
脑和眼压引起的视神经和视网膜变性
- 批准号:
10665661 - 财政年份:2015
- 资助金额:
$ 42.55万 - 项目类别:
Brain and eye pressure-induced optic nerve and retinal degeneration
脑和眼压引起的视神经和视网膜变性
- 批准号:
10224691 - 财政年份:2015
- 资助金额:
$ 42.55万 - 项目类别:
RETINAL GANGLION CELL AND AMACRINE CELL FUNCTION IN MOUSE MODELS OF ELEVATED INTR
INTR升高小鼠模型中视网膜神经节细胞和无精细胞的功能
- 批准号:
8703704 - 财政年份:2011
- 资助金额:
$ 42.55万 - 项目类别:
RETINAL GANGLION CELL AND AMACRINE CELL FUNCTION IN MOUSE MODELS OF ELEVATED INTR
INTR升高小鼠模型中视网膜神经节细胞和无精细胞的功能
- 批准号:
8885832 - 财政年份:2011
- 资助金额:
$ 42.55万 - 项目类别:
相似国自然基金
微波敏感型铁死亡纳米放大器的构建及其增敏肝癌消融-免疫联合治疗的应用与机制研究
- 批准号:82302368
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
低密度中性粒细胞促进早期乳腺癌微波消融治疗后复发转移的作用及机制研究
- 批准号:82303710
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
玛纳斯河流域上游吸收性气溶胶来源及其对积雪消融的影响研究
- 批准号:42307523
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于超声混合深度神经网络对PIMSRA心肌热消融边界的实时可视化与识别研究
- 批准号:82302204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
纳米刀消融通过METTL5介导的核糖体18S rRNA m6A修饰募集MDSC促进肝癌复发的作用及机制研究
- 批准号:82373004
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
The Role of VEGF in the Development of Low Back Pain Following IVD Injury
VEGF 在 IVD 损伤后腰痛发展中的作用
- 批准号:
10668079 - 财政年份:2023
- 资助金额:
$ 42.55万 - 项目类别:
Renal Denervation To Treat Hypertension: Mechanisms and Mediators
肾去神经术治疗高血压:机制和介质
- 批准号:
10226255 - 财政年份:2018
- 资助金额:
$ 42.55万 - 项目类别:
Brain and eye pressure-induced optic nerve and retinal degeneration
脑和眼压引起的视神经和视网膜变性
- 批准号:
10665661 - 财政年份:2015
- 资助金额:
$ 42.55万 - 项目类别:
Brain and eye pressure-induced optic nerve and retinal degeneration
脑和眼压引起的视神经和视网膜变性
- 批准号:
10224691 - 财政年份:2015
- 资助金额:
$ 42.55万 - 项目类别:
Esrp regulated programs of alternative splicing in skin development and function
Esrp 调控皮肤发育和功能中的选择性剪接程序
- 批准号:
9058997 - 财政年份:2015
- 资助金额:
$ 42.55万 - 项目类别: