Defining causal roles of genomic variants on gene regulatory networks with spatiotemporally-resolved single-cell multiomics
通过时空解析的单细胞多组学定义基因组变异对基因调控网络的因果作用
基本信息
- 批准号:10474569
- 负责人:
- 金额:$ 121万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalATAC-seqAdherent CultureAffectAfricanAfrican AmericanAutomobile DrivingBar CodesBasic ScienceBenchmarkingBiologyBrainCardiacCell CommunicationCell Differentiation processCell LineCell LineageCellsCellular AssayChromatinClustered Regularly Interspaced Short Palindromic RepeatsCollaborationsComputational algorithmComputer ModelsComputer softwareComputing MethodologiesDNADNA MethylationDataData SetDatabasesDevelopmentDevelopmental GeneElementsEpigenetic ProcessEuropeanGenderGene ExpressionGene Expression RegulationGenesGeneticGenetic VariationGenomeGenomic SegmentGenomicsHumanHuman DevelopmentHuman GeneticsInfrastructureKnowledgeLabelMachine LearningMeasurementMeasuresMessenger RNAMetabolicMethodsModalityModelingMultipotent Stem CellsOrganismOrganoidsOutcomePennsylvaniaPerformancePhenotypePopulation HeterogeneityRNARegulatory ElementResearch PersonnelRoleTechnologyTestingTimeTranslatingTranslational ResearchUniversitiesUntranslated RNAWashingtonbasebiological systemscausal variantcell typecombinatorialcomputer frameworkcomputerized toolsdata integrationdata sharingdeep learningdisorder riskepigenome editingepigenomicsgene regulatory networkgenetic variantgenome editinggenomic toolsgenomic variationhuman diseaseimprovedinduced pluripotent stem cellinsightmRNA sequencingmembermethylomemulti-ethnicmultimodal datamultimodalitymultiple omicsnetwork modelsnovelopen sourcepredictive modelingreconstructionrelating to nervous systemrisk variantsingle cell technologysingle moleculesingle-cell RNA sequencingspatiotemporalstem cell differentiationtherapeutic targettranscription factortranscriptomics
项目摘要
PROJECT SUMMARY
A fundamental question in biology is to understand how genetic variation affects genome function to influence
phenotypes. The majority of genetic variants associated with human diseases are located within non-coding
genomic regions and may affect genome functions and phenotypes through modulating the activity of cis-
regulatory elements and cell-type specific gene regulatory networks (GRNs). However, our knowledge about
the impact of genomic variants (alone or as combinations) on gene expression, GRN activity and ultimately
cellular phenotypes are rather limited. Further, because transcription factors (TFs) and related cis-regulatory
elements are known to have distinct functions based on cell-type and state, how genomic variants influence
cell-type/state-specific activity of functional elements and phenotypes remains to be characterized in much
greater details.
This proposal aims to leverage a panel of multi-ethnic, gender-balanced human induced pluripotent stem cell
(hiPSC) lines (European, African American and African hunter gatherers) as well as recent advances in single-
cell time-resolved or multi-omics technologies, predictive modeling of regulatory networks by machine learning
and high throughput single-cell perturbation methods to study the functional impact of genomic variations on
regulatory network, cellular phenotypes. First, we will establish a robust experimental framework of deploying
advanced time-resolved and multi-omic single-cell technologies for detecting functional genetic variants at
single-cell level. Next, we will develop novel computational methods for integration of single-cell data across
different modalities and for accurate reconstruction and predictive modeling of GRNs driving cellular identify,
developmental dynamics (cardiac and neural lineage cell fate transition). Finally, we will apply high-throughput
combinatorial genetic or epigenetic perturbation approaches to modulate activity of key genes or putative cis-
regulatory elements at single-cell levels to improve our understanding of network level relationships among
genomic variants and phenotypes.
项目概要
生物学的一个基本问题是了解遗传变异如何影响基因组功能以影响
表型。与人类疾病相关的大多数遗传变异位于非编码区域
基因组区域,并可能通过调节顺式-的活性影响基因组功能和表型
调控元件和细胞类型特异性基因调控网络(GRN)。然而,我们的知识
基因组变异(单独或组合)对基因表达、GRN 活性以及最终的影响
细胞表型相当有限。此外,由于转录因子(TF)和相关的顺式调节
已知元素根据细胞类型和状态具有不同的功能,基因组变异如何影响
功能元件和表型的细胞类型/状态特异性活性仍有待表征
更多细节。
该提案旨在利用一组多种族、性别平衡的人类诱导多能干细胞
(hiPSC)线(欧洲、非裔美国人和非洲狩猎采集者)以及单细胞的最新进展
细胞时间分辨或多组学技术,通过机器学习对调控网络进行预测建模
和高通量单细胞扰动方法来研究基因组变异对功能的影响
调节网络,细胞表型。首先,我们将建立一个强大的部署实验框架
先进的时间分辨和多组学单细胞技术,用于检测功能性遗传变异
单细胞水平。接下来,我们将开发新的计算方法来整合单细胞数据
不同的模式以及驱动细胞识别的 GRN 的精确重建和预测建模,
发育动力学(心脏和神经谱系细胞命运转变)。最后,我们将应用高通量
组合遗传或表观遗传扰动方法来调节关键基因或假定的顺式活性
单细胞水平的调控元件,以提高我们对网络水平关系的理解
基因组变异和表型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sreeram Kannan其他文献
Sreeram Kannan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sreeram Kannan', 18)}}的其他基金
Defining causal roles of genomic variants on gene regulatory networks with spatiotemporally-resolved single-cell multiomics
通过时空解析的单细胞多组学定义基因组变异对基因调控网络的因果作用
- 批准号:
10297331 - 财政年份:2021
- 资助金额:
$ 121万 - 项目类别:
Defining causal roles of genomic variants on gene regulatory networks with spatiotemporally-resolved single-cell multiomics
通过时空解析的单细胞多组学定义基因组变异对基因调控网络的因果作用
- 批准号:
10297331 - 财政年份:2021
- 资助金额:
$ 121万 - 项目类别:
Algorithms and Software for Provably Accurate De Novo RNA-Seq Assembly
用于可证明准确的 De Novo RNA-Seq 组装的算法和软件
- 批准号:
9145263 - 财政年份:2015
- 资助金额:
$ 121万 - 项目类别:
Algorithms and Software for Provably Accurate De Novo RNA-Seq Assembly
用于可证明准确的 De Novo RNA-Seq 组装的算法和软件
- 批准号:
9624586 - 财政年份:2015
- 资助金额:
$ 121万 - 项目类别:
相似国自然基金
基于ATAC-seq策略挖掘穿心莲基因组中调控穿心莲内酯合成的增强子
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于单细胞ATAC-seq技术的C4光合调控分子机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于ATAC-seq技术研究交叉反应物质197调控TFEB介导的自噬抑制子宫内膜异位症侵袭的分子机制
- 批准号:82001520
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
单细胞RNA和ATAC测序解析肌肉干细胞激活和增殖中的异质性研究
- 批准号:31900570
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
人类胎盘合体滋养层形成分子机制及其与子痫前期发生关联的研究
- 批准号:31900602
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Regulation of Adherent Cell Proliferation by Matrix Viscoelasticity
基质粘弹性对贴壁细胞增殖的调节
- 批准号:
10735701 - 财政年份:2023
- 资助金额:
$ 121万 - 项目类别:
Engineering 3D Osteosarcoma Models to Elucidate Biology and Inform Drug Discovery
工程 3D 骨肉瘤模型以阐明生物学并为药物发现提供信息
- 批准号:
10564801 - 财政年份:2023
- 资助金额:
$ 121万 - 项目类别:
Defining causal roles of genomic variants on gene regulatory networks with spatiotemporally-resolved single-cell multiomics
通过时空解析的单细胞多组学定义基因组变异对基因调控网络的因果作用
- 批准号:
10297331 - 财政年份:2021
- 资助金额:
$ 121万 - 项目类别:
Defining causal roles of genomic variants on gene regulatory networks with spatiotemporally-resolved single-cell multiomics
通过时空解析的单细胞多组学定义基因组变异对基因调控网络的因果作用
- 批准号:
10297331 - 财政年份:2021
- 资助金额:
$ 121万 - 项目类别: