Disease Modeling Unit
疾病模型单位
基本信息
- 批准号:10469586
- 负责人:
- 金额:$ 108.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AllelesAnimal ModelBioinformaticsBiological ModelsBiometryCRISPR/Cas technologyClinicClinicalClinical ResearchClinical TrialsCollectionCommunitiesConsultationsDevelopmentDiseaseDisease modelFacultyFundingGenesGeneticGenetic EngineeringGenomicsGoalsGrantHigh-Throughput Nucleotide SequencingIndividualInfrastructureInterventionLaboratoriesLaboratory miceLeadershipMaintenanceModelingMusMutant Strains MiceOutcomePathologyPhenotypePhysiologyPreclinical TestingProcessRecording of previous eventsResearchResearch PersonnelResource DevelopmentResourcesSeedsServicesStructureSystemTechnologyTestingThe Jackson LaboratoryTherapeuticTimeTranslatingUnited States National Institutes of HealthValidationWorkaddictionbasebioinformatics toolclinical applicationcohesioncommunity engagementdesignflexibilityhuman diseasehuman modelimprovedinnovationknockout genemodel designmodel developmentmouse modelneurogeneticsnovel therapeuticsoperationpre-clinicalprecision geneticspreclinical studypreservationprogramsrepositorysuccesstool
项目摘要
PROJECT SUMMARY DISEASE MODELING UNIT
The advent of high-throughput sequencing has allowed rapid discovery of the genetic causes of disease.
However, our ability to translate these discoveries into therapeutics has not kept pace due, at least in part, to a
lack of precise, predictive animal models which still serve as a critical step toward translating potential new
treatments for use in the clinic. The mouse remains a near indispensable tool on the road to clinical
application. Genetically accurate mouse models can be designed to recapitulate most human disease
pathology and therefore allow for detailed studies and preclinical testing of novel therapeutics.
JAX has a long history of developing and studying mouse models of human disease and the institutional
commitment, scale, and expertise to build The Jackson Laboratory (JAX) Center for Precision Genetics
(JCPG). Indeed, JAX is currently funded as one of three Pilot Centers for Precision Genetics, (U54
OD020351). The next iteration of the JCPG will build on the groundwork laid by this effort that was able to
successfully move, within one grant cycle, from disease model development through completion of the
preclinical work to now move toward clinical trials. The JCPG infrastructure now proposed refines, focuses and
expands on the infrastructure and services that were essential to the successes of the previous pilot. The next
JCPG will serve our existing diverse set of clinical collaborators even better and broaden access for an even
larger portion of the biomedical community. The JCPG Disease Modeling Unit (DMU) is key to launching
development of a new disease model. Working closely first with the Bioinformatics Core to establish an
optimal genetic/genomic design the DMU will then guide each model through phenotypic characterization
working in consultation with preclinical and clinical partners (JCPG Pre/CoClinical Core) to validate and
establish the model before passing the new model to the Resource and Services Core for colony maintenance,
preservation and worldwide distribution.
The overall goal of the Disease Modeling Unit (DMU) is to refine the operation of the JCPG Cores into a single
integrated, flexible, and cohesive disease modeling pipeline that can support the growing and diverse needs of
the biomedical community. Many key components are already in place so the DMU will focus on building the
program and project management infrastructure to integrate innovative new tools and analysis platforms.
To accomplish this the DMU will: 1) build a comprehensive precision model development and characterization
pipeline that has the scale, management infrastructure, and bioinformatics tools to support external
nominations from the community, 2) leverage ongoing JCPG projects to “seed” the pipeline with “shovel-ready”
high-impact projects that will allow refinement of pipeline structure and processes and, 3) develop and execute
three Demonstration Projects to extend JCPG technical and scientific capabilities to support a wider array of
disease modeling needs.
项目摘要疾病建模单元
高通量测序的出现使得快速发现疾病的遗传原因成为可能。
然而,我们将这些发现转化为治疗方法的能力并没有跟上步伐,至少部分是由于
缺乏精确的、预测性的动物模型,而这些模型仍然是转化潜在新产品的关键一步。
临床上使用的治疗方法仍然是临床道路上不可或缺的工具。
可以设计遗传精确的小鼠模型来重现大多数人类疾病。
病理学,因此可以对新疗法进行详细研究和临床前测试。
JAX在开发和研究人类疾病小鼠模型方面拥有悠久的历史和机构
建立杰克逊实验室 (JAX) 精准遗传学中心的承诺、规模和专业知识
事实上,JAX 目前是三个精准遗传学试点中心之一(U54)。
JCPG 的下一次迭代将建立在这一努力所奠定的基础上,从而能够
在一个资助周期内成功地从疾病模型开发过渡到完成
JCPG 基础设施现在建议对临床前工作进行改进、重点关注和改进。
扩展了对上一个试点的成功至关重要的基础设施和服务。
JCPG 将更好地为我们现有的多元化临床合作者提供服务,并扩大访问范围,以实现更公平的合作
JCPG 疾病模型单元 (DMU) 是启动的关键。
首先与生物信息学核心密切合作,建立一个新的疾病模型。
最佳的遗传/基因组设计,DMU 将指导每个模型进行表型表征
与临床前和临床合作伙伴(JCPG Pre/CoClinical Core)协商以验证和
在将新模型传递到资源和服务核心进行集群维护之前建立模型,
保存和全球发行。
疾病建模单元 (DMU) 的总体目标是将 JCPG 核心的操作细化为单个
集成的、灵活的、有凝聚力的疾病建模管道,可以支持日益增长和多样化的需求
生物医学界的许多关键组成部分已经到位,因此 DMU 将专注于建设
计划和项目管理基础设施,以集成创新的新工具和分析平台。
为了实现这一目标,DMU 将:1) 建立全面的精密模型开发和表征
具有规模、管理基础设施和生物信息学工具来支持外部的管道
来自社区的提名,2) 利用正在进行的 JCPG 项目为管道“播种”“准备就绪”
高影响力项目将允许改进管道结构和流程,3)开发和执行
三个示范项目旨在扩展 JCPG 的技术和科学能力,以支持更广泛的领域
疾病建模需求。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephen A Murray其他文献
A resource of targeted mutant mouse lines for 5,061 genes
5,061 个基因的靶向突变小鼠品系资源
- DOI:
10.1101/844092 - 发表时间:
2019-11-22 - 期刊:
- 影响因子:0
- 作者:
M. Birling;Atsushi Yoshiki;David J. Adams;Shinya Ayabe;Arthur L Beaudet;Joanna Bottomley;Allan Bradley;Steve D M Brown;Antje Bürger;Wendy Bushell;Francesco Chiani;Hsian;Skevoulla Christou;G. Codner;Francesco J. DeMayo;Francesco J. DeMayo;Mary E. Dickinson;B. Doe;Leah Rae Donahue;M. Fray;A. Gambadoro;Xiang Gao;Marina Gertsenstein;A. Gomez;Leslie O. Goodwin;Jason D. Heaney;Yann Hérault;M. Angelis;Si;Monica J. Justice;P. Kasparek;R. King;Ralf Kühn;Ho Lee;Young Jae Lee;Zhiwei Liu;K. C. K. Lloyd;I. Lorenzo;A. Mallon;C. McKerlie;T. Meehan;Stuart Newman;L. Nutter;Goo Taeg Oh;G. Pavlovic;R. Ramírez‐Solís;B. Rosen;Edward Ryder;Luis Santos;J. Schick;J. Seavitt;R. Sedláček;C. Seisenberger;Je Kyung Seong;W. Skarnes;T. Sorg;Karen P. Steel;Masaru Tamura;G. Tocchini;Chi;H. Wardle;Marie Wattenhofer;Sara Wells;Brandon J. Willis;J. A. Wood;W. Wurst;Ying Xu;L. Teboul;Stephen A Murray - 通讯作者:
Stephen A Murray
Impact of Essential Genes on the Success of Genome Editing Experiments Generating 3,313 New Genetically Engineered Mouse Lines
必需基因对基因组编辑实验成功产生 3,313 个新基因工程小鼠品系的影响
- DOI:
10.1101/2021.10.06.463037 - 发表时间:
2021-10-06 - 期刊:
- 影响因子:0
- 作者:
Hillary Elrick;Kevin Peterson;Joshua A. Wood;Denise G. Lanza;Elif F. Acar;L. Teboul;Edward Ryder;Shinya Ayabe;M. Birling;Adam Caulder;Francesco Chiani;G. Codner;B. Doe;Graham Duddy;A. Gambadoro;Marina Gertsenstein;A. Gomez;Leslie O. Goodwin;Cunxiang Ju;P. Kasparek;R. King;Daekee Lee;Ho Lee;L. Lintott;Zhiwei Liu;Isabel Lorenzo;M. Mackenzie;S. Marschall;Peter Matthews;Mark T. Ruhe;Luis Santos;J. Seavitt;C. Seisenberger;H. Wardle;Brandon J. Willis;Jie Zhang;Jing Zhao;Fei Zhou;David J. Adams;Allan Bradley;Robert E. Braun;Francesco J. DeMayo;Mary E. Dickinson;Xiang Gao;Yann Herault;M. Hrabě de Angelis;K. C. K. Lloyd;A. Mallon;F. Mammano;C. McKerlie;T. Meehan;Helen Parkinson;R. Ramírez‐Solís;R. Sedláček;J. Seong;W. Skarnes;Damien Smedley;Masaru Tamura;Sara Wells;J. K. White;W. Wurst;Atsushi Yoshiki;Stephen A Murray;Jason D. Heaney;L. Nutter - 通讯作者:
L. Nutter
Discovery and validation of genes driving drug‐intake and related behavioral traits in mice
小鼠药物摄入驱动基因和相关行为特征的发现和验证
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Tyler A. Roy;J. Bubier;P. Dickson;Troy D. Wilcox;Juliet Ndukum;James W. Clark;Stacey J Sukoff Rizzo;J. C. Crabbe;J. Denegre;K. Svenson;Robert E. Braun;Vivek Kumar;Stephen A Murray;Jacqueline K. White;V. Philip;E. Chesler - 通讯作者:
E. Chesler
Response to “Unexpected mutations after CRISPR–Cas9 editing in vivo”
对“体内 CRISPR Cas9 编辑后意外突变”的反应
- DOI:
10.1038/nmeth.4559 - 发表时间:
2018-03-30 - 期刊:
- 影响因子:48
- 作者:
L. Nutter;Jason D. Heaney;K. C. K. Lloyd;Stephen A Murray;J. Seavitt;W. Skarnes;L. Teboul;Steve D M Brown;Mark Moore - 通讯作者:
Mark Moore
Efficient in vivo neuronal genome editing in the mouse brain using nanocapsules containing CRISPR-Cas9 ribonucleoproteins
使用含有 CRISPR-Cas9 核糖核蛋白的纳米胶囊对小鼠大脑进行有效的体内神经元基因组编辑
- DOI:
10.1101/2022.07.24.501299 - 发表时间:
2022-07-24 - 期刊:
- 影响因子:0
- 作者:
J. Metzger;Yuyuan Wang;Samuel S. Neuman;Kathy J. Snow;Stephen A Murray;Cathleen M. Lutz;Viktoriya Bondarenko;Jesi Felton;Kirstan Gimse;Ruosen Xie;Yi Zhao;Matthew T Flowers;Heather A. Simmons;Subhojit Roy;Krishanu Saha;Jon E Levine;M. Emborg;Shaoqin Gong - 通讯作者:
Shaoqin Gong
Stephen A Murray的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephen A Murray', 18)}}的其他基金
High Throughput Production and Cryopreservation of Knockout Mice
基因敲除小鼠的高通量生产和冷冻保存
- 批准号:
9111162 - 财政年份:2011
- 资助金额:
$ 108.39万 - 项目类别:
相似国自然基金
髋关节撞击综合征过度运动及机械刺激动物模型建立与相关致病机制研究
- 批准号:82372496
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
探索在急性呼吸窘迫综合征动物模型和患者长时间俯卧位通气过程中动态滴定呼气末正压的意义
- 批准号:82270081
- 批准年份:2022
- 资助金额:76 万元
- 项目类别:面上项目
脆性X综合征动物模型中异常视觉信息处理和视觉注意力的神经环路机制研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
无菌动物模型与单细胞拉曼技术结合的猴与人自闭症靶标菌筛选及其机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
雌激素抑制髓系白血病动物模型中粒细胞异常增生的机制
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
相似海外基金
The effects of APOE genotype in homeostatic microglial function in preclinical APOE mouse model
APOE基因型对临床前APOE小鼠模型稳态小胶质细胞功能的影响
- 批准号:
10828613 - 财政年份:2023
- 资助金额:
$ 108.39万 - 项目类别:
Functional analysis of KCNK12 in dopaminergic neuroprotection
KCNK12在多巴胺能神经保护中的功能分析
- 批准号:
10665836 - 财政年份:2023
- 资助金额:
$ 108.39万 - 项目类别:
The role of the Foxi3 transcription factor in craniofacial microsomia
Foxi3转录因子在颅面微小症中的作用
- 批准号:
10666893 - 财政年份:2023
- 资助金额:
$ 108.39万 - 项目类别: