Electrical spectral imaging using magnetic resonance methods
使用磁共振方法进行电光谱成像
基本信息
- 批准号:10468820
- 负责人:
- 金额:$ 23.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAmplifiersAnimalsAreaBiologicalBiophysicsBrainBrain NeoplasmsBrain PathologyBrain imagingCaliberCardiacCell Culture TechniquesCell DensityCell ShapeCell SizeCellsCharacteristicsComputer ModelsContralateralCustomDataDependenceDevelopmentDiagnosisDiffusionDiseaseElectric ConductivityElectric StimulationElectricityElectrolytesElectroporationElectroporation TherapyEvaluationFrequenciesGlioblastomaGliomaHumanImageIn VitroIschemic StrokeKnowledgeLettersMagnetic ResonanceMagnetic Resonance ImagingMagnetismMalignant NeoplasmsMalignant neoplasm of brainMeasurableMeasurementMeasuresMediatingMembraneMethodsMitoticModelingMonitorPathologicPhaseProceduresProcessPropertyRattusReportingResearchSamplingScanningSensitivity and SpecificityShort Interspersed Nucleotide ElementsSignal TransductionSourceSpectrum AnalysisStainsTechniquesTestingTimeTissuesTreatment EfficacyTumor TissueValidationVariantVascularizationWorkanalogbasecancer cellcancer diagnosiscancer imagingcancer therapycontrast enhanceddensitydesign and constructiondiagnostic tooldigitalelectric impedanceelectrical impedance tomographyelectrical propertyhigh resolution imaginghuman subjectimaging modalityimaging propertiesimprovedin vivoinnovationinterestneoplastic cellneuroregulationnon-invasive imagingnoninvasive diagnosisnovelprogramsprospectivereconstructionresponsesimulationspectrographtissue phantomtooltreatment planningtumorunilamellar vesiclevector
项目摘要
The low-frequency electrical properties of biological tissue provide sensitive and valuable indications of cell
density, membrane properties, electrolyte concentrations and mobilities and the presence or absence of
disease, particularly at frequencies between 1 kHz and 1 MHz. Measurements of variations in these properties
between these frequencies provide a unique view of tissue state. Imaging of electrical properties, combined
with electrical spectroscopy, would allow subtle examination of both spatial and time-dependent tissue
characteristics that are important in the diagnosis and therapy of brain cancers. Unfortunately, relatively few
reports of tissue electrical properties are in this frequency range, because they involve invasive and often
error-prone procedures.
Several Magnetic Resonance Imaging (MRI)-based, non-invasive methods of imaging electrical property
distributions have recently been developed. However, these methods can only be used at high frequencies
(>100 MHz) or very low frequencies (<100 Hz). For example, the technique of Diffusion Tensor Magnetic
Resonance Electrical Impedance Tomography (DT-MREIT) combines MR diffusion tensor and MR phase
images to produce reconstruction of full anisotropic conductivity tensor images at very low frequencies.
However, present DT-MREIT techniques are restricted to measurement frequencies of around 10 Hz.
We now propose transforming MREIT methods to capture spectral effects over the frequency range from 10
Hz to 500 kHz. The new technique, multifrequency MREIT (MF-MREIT) will be validated using computational
models, cell and tissue phantoms and in-vivo using a rat model of brain cancer. The specific focus of the
project will be measuring and characterizing low-frequency electrical properties of cancer cell cultures and
tumors grown from these cells in rat brains. It is anticipated that these measurements will lead to better
understanding of tumor properties and aid in planning new electrical therapies that are increasingly being used
to successfully treat brain tumors. The technique will have further application in diverse areas, including
characterization of tissue responses to tumor treating fields, irreversible electroporation therapy, and
measurement of tissue properties for construction of accurate computational models used in planning
neuromodulation treatments.
生物组织的低频电特性提供了细胞的敏感且有价值的指示
密度、膜特性、电解质浓度和迁移率以及是否存在
疾病,特别是在 1 kHz 和 1 MHz 之间的频率。这些特性变化的测量
这些频率之间提供了组织状态的独特视图。电气特性成像,组合
通过电光谱技术,可以对空间和时间相关的组织进行精细检查
对脑癌的诊断和治疗很重要的特征。不幸的是,相对较少
组织电特性的报告都在这个频率范围内,因为它们涉及侵入性且经常
容易出错的程序。
几种基于磁共振成像 (MRI) 的非侵入性电特性成像方法
最近开发了发行版。然而这些方法只能在高频下使用
(>100 MHz) 或极低频率 (<100 Hz)。例如,扩散张量磁技术
共振电阻抗断层扫描 (DT-MREIT) 结合了 MR 扩散张量和 MR 相位
图像以重建非常低频率下的完整各向异性电导率张量图像。
然而,目前的 DT-MREIT 技术仅限于 10 Hz 左右的测量频率。
我们现在建议转变 MREIT 方法以捕获 10 频率范围内的频谱效应
赫兹至 500 赫兹。新技术多频 MREIT (MF-MREIT) 将通过计算进行验证
模型、细胞和组织模型以及使用脑癌大鼠模型的体内模型。具体重点是
该项目将测量和表征癌细胞培养物的低频电特性,
老鼠大脑中的这些细胞生长出肿瘤。预计这些测量将带来更好的结果
了解肿瘤特性并帮助规划越来越多地使用的新电疗法
成功治疗脑肿瘤。该技术将在不同领域得到进一步应用,包括
组织对肿瘤治疗场、不可逆电穿孔疗法的反应特征,以及
测量组织特性以构建规划中使用的精确计算模型
神经调节治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ROSALIND J SADLEIR其他文献
ROSALIND J SADLEIR的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ROSALIND J SADLEIR', 18)}}的其他基金
Electrical spectral imaging using magnetic resonance methods
使用磁共振方法进行电光谱成像
- 批准号:
10309280 - 财政年份:2021
- 资助金额:
$ 23.57万 - 项目类别:
Direct functional imaging of electrical brain stimulation
脑电刺激的直接功能成像
- 批准号:
8505956 - 财政年份:2014
- 资助金额:
$ 23.57万 - 项目类别:
In vivo imaging of therapeutic electric current flow
治疗电流的体内成像
- 批准号:
8584055 - 财政年份:2014
- 资助金额:
$ 23.57万 - 项目类别:
Direct functional imaging of electrical brain stimulation
脑电刺激的直接功能成像
- 批准号:
9024627 - 财政年份:2014
- 资助金额:
$ 23.57万 - 项目类别:
Direct functional imaging of electrical brain stimulation
脑电刺激的直接功能成像
- 批准号:
8816151 - 财政年份:2014
- 资助金额:
$ 23.57万 - 项目类别:
In vivo imaging of therapeutic electric current flow
治疗电流的体内成像
- 批准号:
8853958 - 财政年份:2014
- 资助金额:
$ 23.57万 - 项目类别:
Detection and Quantification of Neonatal Intraventricular Hemorrhage
新生儿脑室内出血的检测和定量
- 批准号:
8539858 - 财政年份:2012
- 资助金额:
$ 23.57万 - 项目类别:
Detection and Quantification of Neonatal Intraventricular Hemorrhage
新生儿脑室内出血的检测和定量
- 批准号:
8394459 - 财政年份:2012
- 资助金额:
$ 23.57万 - 项目类别:
相似国自然基金
基于光学参量放大器的高灵敏量子干涉仪
- 批准号:62305056
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于太赫兹行波管放大器的高效率多路功率合成技术的研究
- 批准号:62371102
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
微波敏感型铁死亡纳米放大器的构建及其增敏肝癌消融-免疫联合治疗的应用与机制研究
- 批准号:82302368
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高增益超宽带CMOS太赫兹放大器关键技术研究
- 批准号:62374026
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
面向超精密电机系统的双降压对称半桥功率放大器噪声机理及抑制策略研究
- 批准号:52307042
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Reconfigurable 3D Origami Probes for Multi-modal Neural Interface
用于多模态神经接口的可重构 3D 折纸探针
- 批准号:
10738994 - 财政年份:2023
- 资助金额:
$ 23.57万 - 项目类别:
ONIX: A Neural Acquisition System for Unencumbered, Closed-Loop Recordings in Small, Freely Moving Animals
ONIX:一种神经采集系统,用于对小型、自由移动的动物进行无阻碍、闭环记录
- 批准号:
10482182 - 财政年份:2022
- 资助金额:
$ 23.57万 - 项目类别:
Neuro-CROWN:Optimized Ultra-Flexible CMOS Electrode Arrays for 3D, Low-Noise Neural Interfaces
Neuro-CROWN:用于 3D、低噪声神经接口的优化超灵活 CMOS 电极阵列
- 批准号:
10294053 - 财政年份:2021
- 资助金额:
$ 23.57万 - 项目类别:
Neuro-CROWN:Optimized Ultra-Flexible CMOS Electrode Arrays for 3D, Low-Noise Neural Interfaces
Neuro-CROWN:用于 3D、低噪声神经接口的优化超灵活 CMOS 电极阵列
- 批准号:
10674415 - 财政年份:2021
- 资助金额:
$ 23.57万 - 项目类别:
Platform technologies for scalable highly multiplexed proteomic phenotyping of the brain
用于可扩展的高度多重大脑蛋白质组表型分析的平台技术
- 批准号:
10369777 - 财政年份:2021
- 资助金额:
$ 23.57万 - 项目类别: