Single-cell elucidation of transcriptional regulatory mechanisms that govern cell surface variation of the human symbiotic bacteria Bacteroidetes
单细胞阐明控制人类共生细菌拟杆菌细胞表面变异的转录调控机制
基本信息
- 批准号:10464643
- 负责人:
- 金额:$ 3.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:Anaerobic BacteriaAntibiotic ResistanceAntibioticsAntibodiesBacteriaBacteriologyBacteriophagesBacteroidesBacteroides fragilisBacteroidetesBar CodesBindingBiochemicalBiochemistryBiological AssayBiological ModelsCell surfaceCellsChIP-seqClostridium difficileCollaborationsCommunitiesComplexCore FacilityCryoelectron MicroscopyCrystallizationDNA-Directed RNA PolymeraseDataDefense MechanismsDevelopmentEngineeringEnvironmentEvolutionFamilyGene ExpressionGene Expression ProfileGene Expression RegulationGenesGenetic TranscriptionGenomicsGoalsHumanHuman EngineeringImmuneIn VitroInvertaseKnowledgeLearningMentorsMicrobial BiofilmsMicrofluidicsModelingMolecularOperonOutcomePatternPhasePhenotypePolysaccharidesPopulationPopulation HeterogeneityProcessProteinsRegulonReproducibilityResourcesRoentgen RaysSamplingSiteStressStructureSurfaceSystemTechnologyTestingTimeTrainingUniversitiesVariantWorkantibiotic designantiterminationcareercombinatorialenvironmental stressorexperienceexperimental studyfollow-upgene expression variationgut microbiotahuman microbiotaimprovedinhibitorinnovationinnovative technologiesmicrofluidic technologypathogenpathogenic bacteriapromoterrational designresistance genesingle cell sequencingsingle cell technologytranscription factor
项目摘要
Project Summary and Abstract
Phase variation of gene expression enables bacteria to generate heterogenous populations and organize
communities that collectively can withstand diverse environmental perturbations. This discrete ON/OFF pattern
of gene expression occurs at multiple loci concurrently to create extensive phenotypic variation, but how
expression from multiple phase variable loci is coordinated is unknown. We developed a breakthrough single-
cell microfluidics technology to study phase variation at multiple loci directly, simultaneously, and over time to
track specialized bacterial sub-populations and learn fundamental principles determining their relative
abundances, rates of development, and interconnectedness. We learn these principles for Bacteroides fragilis,
a crucial human gut symbiote and master of phase variation. B. fragilis directly inhibits pathogens such as
Clostridium difficile and rapidly evolves a vast reservoir of mobile, phase variable antibiotic resistance genes.
Studying phase variation mechanisms in B. fragilis will enhance engineering of human microbiota and rational
design of symbiote-friendly antibiotics to limit evolution and subsequent mobilization of antibiotic-resistance
genes. We combine single-cell microfluidics with genomics and biochemistry to specifically dissect a two-part
regulatory system enabling coordinated phase variation: promoter inversion and termination control. To study
these fundamental principles governing phase variable gene expression, I will be trained primarily in genomics
and single-cell microfluidics by my co-mentors, Dr. Robert Landick and Dr. Ophelia Venturelli. Dr. Landick’s
decades of experience studying fundamental mechanisms of prokaryotic gene regulation combined with Dr.
Venturelli’s expertise in anaerobic bacteriology, engineering, and microfluidics provide me optimal training to
achieve my career goal. The state-of-the-art facilities and resources provided by UW-Madison and the
Departments of Biochemistry and Bacteriology provide me with the optimal environment in which I will carry out
this project.
项目概要和摘要
基因表达的相位变化使细菌能够产生异质群体并组织起来
共同能够承受不同环境扰动的社区。
基因表达的变化同时发生在多个位点以产生广泛的表型变异,但是如何
多相可变基因座的表达是否协调尚不清楚,我们开发了突破性的单相。
细胞微流体技术可直接、同时、随时间研究多个位点的相位变化
跟踪专门的细菌亚群并学习决定其相对关系的基本原理
我们了解脆弱拟杆菌的丰度、发育速度和相互关联性。
脆弱拟杆菌是一种重要的人类肠道共生体,可直接抑制病原体,例如
艰难梭菌迅速进化出大量可移动、相变的抗生素抗性基因。
研究脆弱拟杆菌的相变机制将增强人类微生物群的工程和合理性
设计共生体友好型抗生素,以限制抗生素耐药性的进化和随后的动员
我们将单细胞微流体与基因组学和生物化学相结合,专门剖析两部分。
调节系统可实现协调的相变:启动子反转和终止控制。
这些控制相变基因表达的基本原则,我将主要接受基因组学方面的培训
以及我的合作导师 Robert Landick 博士和 Ophelia Venturelli 博士的单细胞微流体学。
与博士结合数十年研究原核基因调控基本机制的经验。
Venturelli 在厌氧细菌学、工程学和微流体学方面的专业知识为我提供了最佳的培训
实现我的职业目标 威斯康辛大学麦迪逊分校和威斯康星大学麦迪逊分校提供的最先进的设施和资源。
生物化学系和细菌学系为我提供了最佳的环境
这个项目。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Johnson Jargese Saba其他文献
Johnson Jargese Saba的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Johnson Jargese Saba', 18)}}的其他基金
Single-cell elucidation of transcriptional regulatory mechanisms that govern cell surface variation of the human symbiotic bacteria Bacteroidetes
单细胞阐明控制人类共生细菌拟杆菌细胞表面变异的转录调控机制
- 批准号:
10682388 - 财政年份:2022
- 资助金额:
$ 3.35万 - 项目类别:
相似国自然基金
多环芳烃影响大肠杆菌抗生素耐药性进化的分子机制
- 批准号:32301424
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
靶向铜绿假单胞菌FpvA蛋白的铁载体偶联抗生素克服细菌耐药性及作用机制研究
- 批准号:82304313
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
乙醇脱氢酶AdhB介导肺炎链球菌抗生素耐药性的机制研究
- 批准号:32300154
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
鸭肠道菌群抗生素耐药性分布及替抗噬菌体内溶素鉴定研究
- 批准号:32360830
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
消毒剂-抗生素循环压力下鲍曼不动杆菌耐药性演变及其作用机制
- 批准号:82273586
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
相似海外基金
Project 2: Discovery of novel C. difficile antigens using genetic and biochemical approaches
项目2:利用遗传和生化方法发现新的艰难梭菌抗原
- 批准号:
10625693 - 财政年份:2023
- 资助金额:
$ 3.35万 - 项目类别:
Identification of a novel two-component system involved in peptidoglycan synthesis in Clostridioides difficile
艰难梭菌肽聚糖合成中涉及的新型双组分系统的鉴定
- 批准号:
10511069 - 财政年份:2022
- 资助金额:
$ 3.35万 - 项目类别:
Programmable benchtop bioreactors for scalable eco-evolutionary dynamics of the human microbiome
用于人类微生物组可扩展生态进化动力学的可编程台式生物反应器
- 批准号:
10503736 - 财政年份:2022
- 资助金额:
$ 3.35万 - 项目类别:
Impact of mucin fermenting microbes on the virulence of Pseudomonas aeruginosa in chronic rhinosinusitis
粘蛋白发酵微生物对慢性鼻窦炎铜绿假单胞菌毒力的影响
- 批准号:
10430744 - 财政年份:2022
- 资助金额:
$ 3.35万 - 项目类别:
Longitudinal microbiome-host interactions and clinical outcomes in drug-resistant tuberculosis patients
耐药结核病患者的纵向微生物组-宿主相互作用和临床结果
- 批准号:
10672997 - 财政年份:2022
- 资助金额:
$ 3.35万 - 项目类别: